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by the U.S. Department of Energy, and neither Air Products & Chemicals, Inc., Eastman Chemical
Company, the Air Products Liquid Phase Conversion Company, L.P., nor any of their subcontractors nor
the U.S. Department of Energy, nor any person acting on behalf of either:

(A) Makes any warranty or representation, express or implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this report, or that the use of any information, apparatus,
method, or process disclosed in this report may not infringe privately owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any
information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute its endorsement, recommendation, or favoring
by the U.S. Department of Energy. The views and opinions of authors expressed herein does not
necessarily state or reflect those of the U.S. Department of Energy.
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ABSTRACT

This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean
Coal Technology Program to demonstrate the production of methanol from coal-derived
synthesis gas (syngas), has completed the 69-month operating phase of the program. The
purpose of this Final Report for the “Commercial-Scale Demonstration of the Liquid Phase
Methanol (LPMEOH™) Process” is to provide the public with details on the performance and
economics of the technology. The LPMEOH™ Demonstration Project was a $213.7 million
cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company,
L.P. (the Partnership). The DOE’s cost share was $92,708,370 with the remaining funds coming
from the Partnership. The LPMEOH™ demonstration unit is located at the Eastman Chemical
Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee.

The technology was the product of a cooperative development effort by Air Products and
Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to
enhance electric power generation using integrated gasification combined cycle (IGCC)
technology, the LPMEOH™ Process is ideally suited for directly processing gases produced by
modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a
small, DOE-owned process development facility in LaPorte, Texas, the technology provides
several improvements essential for the economic coproduction of methanol and electricity
directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert
liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the
catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed
at higher rates.

The LPMEOH™ Demonstration Project accomplished the objectives set out in the Cooperative
Agreement with DOE for this Clean Coal Technology project. Overall plant availability
(defined as the percentage of time that the LPMEOH™ demonstration unit was able to operate,
with the exclusion of scheduled outages) was 97.5%, and the longest operating run without
interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced;
Eastman accepted all of the available methanol for use in the production of methyl acetate, and
ultimately cellulose acetate and acetic acid.

The slurry bubble column reactor was successfully scaled from the 10 short tons-per-day (sT/D)
LaPorte AFDU to the 260 sT/D or 80,000 gallons-per-day LPMEOH™ demonstration unit.
Over the first 4 years of operation, the catalyst deactivation rate averaged 0.6 to 0.7% per day,
which was higher than the basis for the design of the LPMEOH™ demonstration unit obtained
from the LaPorte AFDU (0.4% per day). Engineering and laboratory efforts focused on the
removal of trace contaminants in coal-derived synthesis gas (syngas), and the development of a
procedure to activate a full charge of catalyst in the LPMEOH™ reactor (in-situ activation)
followed by temperature programming (the increase of reactor temperature as necessary to
maintain the desired methanol production rate) could reduce the capital cost by as much as 10
percent. Over the last 6 months of operation, these improvements demonstrated the potential to
reduce the design basis for catalyst deactivation rate by 50%. Because the impact of catalyst
cost on the economics of methanol production is significant (reducing the rate of catalyst
deactivation to 0.2% per day can realize a 25 percent reduction in variable cost), this
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performance demonstrated the potential of the LPMEOH™ process to meet the targets for
catalyst consumption utilizing coal-derived syngas. Over the demonstration period, tests were
successfully performed at a variety of conditions anticipated in IGCC/ coproduction applications
(catalyst withdrawal and addition to maintain the desired methanol production rate, operation on
a carbon monoxide (CO)-rich syngas feed, ramping, and on-off operation).

Methanol from the LPMEOH™ Demonstration Project was also used to conduct product-use
testing to demonstrate how a centrally located clean coal electric power plant with methanol
coproduct could provide energy services to local communities. Product-use testing proved that
coal-derived methanol, free of sulfur and other impurities, could be used one day as a
replacement for petroleum in transportation, a peaking fuel in combustion turbines IGCC power
plants, a hydrogen (H;) source for small fuel cells, or as a chemical feedstock.

As a secondary objective to the LPMEOH™ Demonstration Project, design verification testing
was completed to evaluate capability of the slurry bubble column reactor to produce dimethyl
ether (DME) as a coproduct with methanol using the Liquid Phase Dimethyl Ether (LPDME™)
Process. The LPDME™ Process uses a physical mixture of a commercial methanol catalyst and
a commercial dehydration catalyst in a single slurry reactor. During a 25-day design verification
test at the LaPorte AFDU in 1999, the rate of catalyst deactivation for both the methanol
synthesis and dehydration catalysts were slightly higher than the results for the LPMEOH™
Process from the first 3 weeks of the 4-month proof-of-concept run at the LaPorte AFDU in
1988/89. Follow-up economic analysis showed that attractive economics for DME can likely be
achieved at plant sizes approaching 1,100 sT/D. The program participants agreed that additional
work on DME should be deferred so that all resources could be directed toward improving the
catalyst performance for the LPMEOH™ Process during the remaining time within the operating
program.

In evaluating the economics for the technology, studies showed that methanol from the
LPMEOH™ Process can be coproduced with IGCC power at less than $0.50 per gallon. If the
improvement in catalyst performance from the last 6 months of operation can be extrapolated,
the variable cost of production of methanol can be reduced by 25% over the current basis for
future plants. Together, [IGCC and LPMEOH™ technologies will be able to fill local needs for
electric power, transportation fuels, and manufactured chemical products.
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GLOSSARY OF TERMS

Availability - The percentage of time that the LPMEOH™ demonstration unit was able to operate, with
the exclusion of scheduled outages
Balanced Gas - A syngas with a composition of hydrogen (H,), carbon monoxide (CO), and

carbon dioxide (CO,) in stoichiometric balance ([H, — CO,]/[CO + CO;] = 2.05) for the
production of methanol
Carbon Monoxide Gas - A syngas containing primarily carbon monoxide (CO); also called CO Gas

Catalyst Activity - the rate at which the catalyst promotes the desired chemical reaction to proceed within
the limitations of chemical equilibrium
Catalyst Age (n -eta) - The ratio of the rate constant at any point in time to the rate constant for a freshly reduced

catalyst (as determined in the laboratory autoclave)

Catalyst Concentration - Synonym for Slurry Concentration

Catalyst Loading - Synonym for Slurry Concentration

CO Conversion - The percentage of CO consumed across the reactor

Crude-Grade Methanol -Underflow from rectifier column (29C-20), defined as 80 wt% minimum purity;
requires further distillation in existing Eastman equipment prior to use

DOE-NETL - The DOE's National Energy Technology Laboratory (Project Team)
DOE-HQ - The DOE's Headquarters - Coal Fuels and Industrial Systems (Project Team)
Fresh Feed - Sum of Balanced Gas, H, Gas, and CO Gas
Gas Holdup - The percentage of reactor volume up to the Gassed Slurry Height which is gas
Gassed Slurry
Height - Height of gassed slurry in the reactor
Hydrogen Gas - A syngas containing an excess of hydrogen (H,) over the stoichiometric balance for
the production of methanol; also called H, Gas
IGCC/OTM - An IGCC plant with a "Once-Thru Methanol" plant (the LPMEOH™ Process) added-on
Inlet Superficial
Velocity - The ratio of the actual cubic feet of gas at the reactor inlet (calculated at the reactor

temperature and pressure) to the reactor cross-sectional area (excluding the area contribution
by the internal heat exchanger); typical units are feet per second

K - Sparger resistance coefficient (term used in calculation of pressure drop)

M85 - A fuel blend of 85 volume percent methanol and 15 volume percent unleaded gasoline
Methanol Productivity - The gram-moles of methanol produced per hour per kilogram catalyst (on an oxide basis)
MW - Molecular weight, pound per pound mole

p - Density, pounds per cubic foot

Project - Production of Methanol/DME Using the LPMEOH™ Process at an Integrated Coal

Gasification Facility

Raw Methanol - The sum of Refined-Grade Methanol and Crude-Grade Methanol; represents total methanol
which is produced after stabilization
Reactor Feed - The sum of Fresh Feed and Recycle Gas
Reactor O-T-M
Conversion - Percentage of energy (on a lower heating value basis) in the Reactor Feed converted to

methanol (Once-Through-Methanol basis)
Reactor Volumetric

Productivity - The quantity of Raw Methanol produced (tons per day) per cubic foot of reactor volume
up to the Gassed Slurry Level
Recycle Gas - The portion of unreacted syngas effluent from the reactor “recycled” as a feed gas

Refined-Grade Methanol - Distilled methanol, defined as 99.8 wt% minimum purity; used directly in downstream
Eastman processes

Slurry Concentration -  Percentage of weight of slurry (solid plus liquid) which is catalyst (on an oxide basis)

Syngas Utilization - Defined as the number of standard cubic feet of Balanced Gas plus CO Gas to the
LPMEOH™ demonstration unit required to produce one pound of Raw Methanol
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GLOSSARY OF TERMS (cont’d)

Synthesis Gas - A gas containing primarily H, and CO, or mixtures of H2 and CO; intended for "synthesis"
in a reactor to form methanol and/or other hydrocarbons (synthesis gas may also contain CO,,
water, and other gases)

Temperature
Programming - The increase of reactor temperature as necessary to control the reactor purge flowrate and
maintain reactor volumetric productivity
Tie-in(s) - The interconnection(s) between the LPMEOH™ demonstration unit and the Eastman Facility
A% - Volumetric flowrate, thousand standard cubic feet per hour
XViii
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EXECUTIVE SUMMARY

This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean
Coal Technology Program to demonstrate the production of methanol from coal-derived
synthesis gas (syngas), has completed the 69-month operating phase of the program. The
purpose of this Final Report for the “Commercial-Scale Demonstration of the Liquid Phase
Methanol (LPMEOH™) Process” is to provide the public with details on the performance and
economics of the technology. The LPMEOH™ Demonstration Project was a $213.7 million
cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company,
L.P. (the Partnership). The DOE’s cost share was $92,708,370 with the remaining funds coming
from the Partnership. The LPMEOH™ demonstration unit is located at the Eastman Chemical
Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee.

The technology was the product of a cooperative development effort by Air Products and
Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to
enhance electric power generation using integrated gasification combined cycle (IGCC)
technology, the LPMEOH™ Process is ideally suited for directly processing gases produced by
modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a
small, DOE-owned process development facility in LaPorte, Texas, the technology provides
several improvements essential for the economic coproduction of methanol and electricity
directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert
liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the
catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed
at higher rates.

The LPMEOH™ Demonstration Project accomplished the objectives set out in the Cooperative
Agreement with DOE for this Clean Coal Technology project. Methanol operation began on 02
April 1997, and startup was completed in two days. Nameplate production of 80,000 gallons per
day (260 short tons per day [sT/D]) was achieved within four days, and production rates
exceeding 115% of design were achieved within six days. Overall plant availability (defined as
the percentage of time that the LPMEOH™ demonstration unit was able to operate, with the
exclusion of scheduled outages) was 97.5%, and the longest operating period without
interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced,
including a one-month maximum of 2.5 million gallons. Eastman accepted all of the available
methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic
acid.

The slurry bubble column reactor was successfully scaled from the 10 sT/D LaPorte AFDU to
the 260 sT/D LPMEOH™ demonstration unit. The LPMEOH™ reactor did not exhibit any
hydrodynamic instability, and the maximum catalyst loading of 151% of the design value of
about 40,000 pounds (corresponding to a slurry concentration of greater than 49 weight %
[wt%]) was achieved. The gas sparger at the inlet to the LPMEOH™ reactor was replaced with
two modified units (using the same design principles as the original device), and stable
performance was realized when a continuous flush of condensed process oil (in this case, by
gravity) was utilized.
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Catalyst performance (as determined by the rate of catalyst deactivation using an in-house
kinetic model) improved during the demonstration test period. Initially, deactivation rates of
greater than 1% per day were calculated at the design operating temperature of 250°C. As a
basis of comparison, the calculated deactivation rate from the 4-month proof-of-concept run at
the LaPorte AFDU in 1988/89 was 0.4% per day. (This run was performed on carbon monoxide
[CO]-rich syngas derived from natural gas.) The high deactivation rates were attributed to the
presence of post-construction debris in the reactor system. During the second catalyst campaign
that began in December of 1997, the rate of catalyst deactivation was calculated to be 0.6 to
0.7% per day at a reactor temperature of 235°C. The practice of catalyst withdrawal and
addition (removing a portion of the spent catalyst from the LPMEOH™ reactor and adding fresh
catalyst in 2,000 pound batches) to maintain the desired methanol production rate was
successfully demonstrated.

In determining the reasons for the higher rate of catalyst deactivation, the presence of certain
elements (in particular, arsenic and sulfur) was identified from samples of spent catalyst, spent
adsorbent materials from catalyst guard beds, and syngas entering the LPMEOH™
demonstration unit. A commercially available copper oxide-impregnated activated carbon was
identified as having capacity to remove arsenic (in the form of arsine) within an existing catalyst
guard bed that was originally designed for removal of metal carbonyls at ambient temperature.

In parallel, laboratory testing was performed to develop a procedure to activate (or reduce) a full
charge of methanol synthesis catalyst within the LPMEOH™ reactor (so-called in-situ
activation). The in-situ activation procedure prepared fresh methanol synthesis catalyst for
production of methanol by reacting metal oxides (for example, copper oxide) with a reductant
such as CO or hydrogen (H,) to produce the base metal plus either carbon dioxide (CO;) or
water (H,O). During the operating program, this feature was identified as having significant
commercial interest, as capital cost savings of about 10% could be realized by elimination of the
separate processing equipment for the catalyst withdrawal/addition procedure. Also, operating
the LPMEOH™ reactor at low temperatures at the outset and slowly increasing temperature with
time to maintain a constant production of methanol (called temperature programming) was
believed to have the potential to extend the life of the methanol synthesis catalyst. Following the
first in-situ activation of methanol synthesis catalyst in August of 2001 (during which initial
performance of the catalyst was about 70% of the value expected from the laboratory testing),
the concept of temperature programming was demonstrated (temperature was gradually raised
from 216°C to 250°C in order to maintain the desired methanol production rate). Following
changes to the storage conditions of the catalyst slurry prior to reduction, the in-situ activation
procedure was successfully practiced in June of 2002, resulting in the catalyst meeting the initial
performance targets.

During the final six months of operation under the demonstration test plan, the average rate of
catalyst deactivation was calculated to be 0.17% per day, which was 72 of the design basis for the
LPMEOH™ demonstration unit. The reactor was maintained at a constant low temperature of
215°C during this period, and the adsorbent used in the catalyst guard bed within the
LPMEOH™ demonstration unit (copper oxide-impregnated activated carbon) was replaced with
fresh material after 3 months of operation (including a novel thermal treatment that was applied
after two months to extend the useful life of the adsorbent). Because the impact of catalyst cost
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on the economics of methanol production is significant (reducing the rate of catalyst deactivation
by up to % of the current basis can realize a 25 percent reduction in variable cost), this
performance demonstrated the potential of the LPMEOH™ process to meet the targets for
catalyst consumption utilizing coal-derived syngas.

Although the host site for the LPMEOH™ demonstration unit was a chemical production
facility, testing was able to be performed to simulate the performance of the LPMEOH™
Process in an IGCC power plant. A total of 78 days of testing at a variety of H,:CO ratios were
performed to evaluate the effect of syngas compositions expected from coal-based IGCC units
on the performance of the LPMEOH™ Process. All of the results met the expectations for
methanol production rate based upon earlier studies in the laboratory. Catalyst performance for
the LPMEOHU reactor with lower H,:CO ratios were not significantly impacted based on the
calculated rate of catalyst deactivation. On/off and ramping studies were also completed, and the
LPMEOH™ demonstration unit was capable of meeting the ramping requirements for an IGCC
system by achieving the goal of a minimum 5% change in design flow per minute. Tests of the
ability of the LPMEOH™ reactor to operate in a load-following environment were also
successful.

Stabilized (degassed) methanol produced from CO-rich syngas in the LPMEOH™ Process can
have less than 1 wt% H,O, and has the potential to be used directly in transportation and power
generation applications. The cost of distillation from stabilized methanol to chemical-grade
purity has been estimated to be $0.02 to $0.04 per gallon. Stabilized methanol from the
LPMEOH™ Demonstration Project was made available to seven test locations to study the
feasibility of its use these systems. Successful demonstration of the use of stabilized methanol in
these applications can enhance the flexibility of and revenue from IGCC plants. In bus and
flexible fuel vehicle (FFV) trials, stabilized methanol provided the same environmental benefits
as chemical-grade methanol with no penalty on performance or fuel economy. Tests in a gas
turbine and a diesel generator showed that levels of nitrogen oxides (NOx) in the exhaust air
were lowered when stabilized methanol or methanol emulsions are used instead of conventional
oil fuels. As with chemical-grade methanol, lubrication additives will likely be required when
stabilized methanol is fed to a gas turbine. Testing of stabilized methanol as the source of H; to
a phosphoric acid fuel cell has shown that conventional steam reforming catalysts are not
compatible with the trace mineral oil present in the stabilized methanol; when auto-thermal
reforming or partial oxidation reforming are used, the stabilized methanol would possibly be
acceptable as a fuel. Methanol from the LPMEOH™ Process that is purified to chemical-grade
specifications should be suitable for use in this application. Product-use testing proved that coal-
derived methanol, free of sulfur and other impurities, could be used one day as a replacement for
petroleum in transportation, a peaking fuel in combustion turbines IGCC power plants, a source
of H, for small fuel cells, or as a chemical feedstock.

As a secondary objective to the LPMEOH™ Demonstration Project, design verification testing
was completed to evaluate capability of the slurry bubble column reactor to produce dimethyl
ether (DME) as a coproduct with methanol using the Liquid Phase Dimethyl Ether (LPDME™)
Process. The LPDME™ Process uses a physical mixture of a commercial methanol catalyst and
a commercial dehydration catalyst in a single slurry reactor. In addition to its current uses, DME
has potential applications as a chemical building block. Also, since the physical properties of
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DME are similar to those of liquefied petroleum gas (LPQG), it has been speculated that DME
could be used in large-scale power production, in home heating, in replacement of LPG for
automobiles, and as a diesel fuel substitute or combustion supplement. Economic targets on the
production cost of DME from the LPDME™ Process were established, and a 25-day design
verification test was performed at the LaPorte AFDU in 1999. The rate of catalyst deactivation
for both the methanol synthesis and dehydration catalysts was calculated to be 0.7% per day,
which was a large improvement over the 4% per day rate of deactivation which was calculated
from autoclave studies prior to the initial test of the LPDME™ Process at the LaPorte AFDU in
1991; these results were slightly higher than the results (0.5% per day) for the LPMEOH™
Process from the first 3 weeks of the 4-month proof-of-concept run at the LaPorte AFDU in
1988/89. Follow-up economic analysis showed that the target DME cost of $7 to $8 per MMBtu
(equivalent to costs for LPG in China) can likely be achieved at plant sizes approaching 1,100
sT/D. The program participants agreed that additional work on DME should be deferred so that
all resources could be directed toward improving the catalyst performance for the LPMEOH™
Process during the remaining time within the operating program.

In evaluating the economics for the technology, parametric studies were also performed to
determine the production cost of methanol from the LPMEOH™ Process in an IGCC power
plant. The process can be designed to operate in a continuous, baseload manner, converting
syngas from oversized gasifiers or from a spare gasifier. The process can also be designed to
operate only during periods of off-peak electric power demand to consume a portion of the
excess syngas and allow the electricity output from the combined-cycle power unit to be
reduced. In this latter circumstance, the gasifiers continue to operate at full baseload capacity, so
the IGCC facility's major capital asset is fully utilized. In either baseload or cycling operation,
partial conversion of between 20% and 40% of the volume of H, and CO in the IGCC power
plant's syngas is optimal on an economic basis, and conversion of up to 50% is feasible.
Methanol conversion costs of about $0.15 per gallon were determined for a coal-based IGCC
plant using the once-through configuration; when the cost of syngas is added, the price of
methanol is less than $0.50 per gallon. As the economics for IGCC systems improve, the
economics for coproduction of methanol will continue to look attractive in local markets when
compared with methanol that is produced in off-shore locations from natural gas.
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1.0 INTRODUCTION

1.1 PURPOSE OF THE PROJECT PERFORMANCE AND ECONOMICS REPORT

The purpose of the Project Performance and Economics Report for the “Commercial-Scale
Demonstration of the Liquid Phase Methanol (LPMEOH™) Process” project is to consolidate
for public use all relevant nonproprietary information on the project, other than that already
included in the Public Design Report (Final Report - Volume 1).

The scope of the report is limited to nonproprietary information. Therefore, although its content
is insufficient to provide a complete tool for designing a LPMEOH™ unit, it will serve as a

reference for the design considerations involved in developing a commercial-scale facility.

1.2 OVERVIEW OF THE PROJECT

1.2.1 Background and History of the Project

The purpose of this project was to demonstrate the commercial viability of the LPMEOH™
Process using coal-derived synthesis gas (syngas). This project was conducted pursuant to the
U.S. Department of Energy (DOE) Clean Coal Technology Program.

The United States needs future sources of alternative liquid fuels. With domestic oil production
declining and imports increasing, the potential of producing affordable liquid fuels from non-
petroleum sources could one day prove both strategically and economically important. The
LPMEOH™ Process offers an extremely attractive route to supplementing our liquid fuel
supplies with methanol made from the abundant coal reserves of the United States.

Methanol also has a broad range of commercial applications. It can be substituted for or blended
with gasoline to power vehicles. It is an excellent fuel for the rapid-start combustion turbines
used by utilities to meet peak electricity demands. It contains no sulfur and has exceptionally
low nitrogen oxide (NOy) characteristics when burned. Methanol may be an economical source
of hydrogen (H,) for fuel cells. It can also be used as a chemical feedstock.

Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman)
entered into a partnership known as Air Products Liquid Phase Conversion Company, L.P. (the
Partnership). The Partnership and the DOE participated in the Clean Coal Technology Program
demonstration of LPMEOH™ technology. The Partnership designed, built, owned, and operated
a nominal 80,000 gallons-per-day (260 short tons-per-day [sT/D]) LPMEOH™ demonstration
unit at Eastman’s chemicals-from-coal complex in Kingsport, Tennessee. The program
objectives were to demonstrate the scaleup and operability of the LPMEOH™ Process under
various coal-based syngas feed compositions and to gain operating experience for future syngas
conversion projects.

The technology is the product of a cooperative development effort by Air Products and DOE in a
program that started in 1981. Developed to enhance electric power generation using integrated
gasification combined cycle (IGCC) technology, the LPMEOH™ Process is ideally suited for
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directly processing gases produced by modern day coal gasifiers. Originally tested at the
Alternative Fuels Development Unit (AFDU), a small, DOE-owned experimental unit in
LaPorte, Texas, the technology offers significant potential, compared to conventional gas-phase
methanol production technologies, to reduce electric power generation costs at coal-based IGCC
facilities with the coproduction of chemical feedstocks and alternative liquid fuels. The
domestically developed LPMEOH™ technology can use domestic coal reserves to produce
clean, storable, liquid fuels and chemical feedstocks. Eventual commercialization of the
LPMEOH™ Process would provide chemical feedstock and electric power cost savings, lower
sulfur dioxide (SO,) and NO, emissions, and could reduce the use of imported liquid fuels.

The LPMEOH™ technology could someday be used as an adjunct to an IGCC power plant—one
of the cleanest and most efficient of the 21st century power generating options. When the IGCC
power plant is not generating electricity at its full capacity, excess syngas can be diverted to
make methanol in a fast ramping LPMEOH™ plant. The methanol could be stored on-site and
used in peaking turbines or sold as a commercial fuel or a chemical feedstock. In this
configuration, the cost of making methanol from coal is likely to be competitive with stand alone
natural gas-to-methanol facilities. A discussion of the process options and economics is
provided in Section 9 of this report.

The LPMEOH™ demonstration unit was integrated with Eastman’s chemicals-from-coal
complex, accepting syngas and converting it to methanol, for use as a chemical feedstock within
the Eastman facility. A portion of the methanol product was evaluated as a zero sulfur, low-NOy
combustion fuel for testing in stationary power applications and mobile transportation use
(buses, flexible-fuel vehicles [FFV’s], etc.).

These fuel-use tests provided a basis for the comparison of the product methanol with
conventionally accepted fuels with regard to emission levels and economic viability. The
program goal of demonstrating methanol as a fuel can lead to the potential for greater use of
oxygenated fuels, which burn cleaner than conventional fuels, thereby reducing air emissions
from mobile (e.g., buses and vanpools) and stationary (e.g., engines, turbines, and fuel cells)
sources.

The DOE, under the Clean Coal Technology Program, provided cost-shared financial assistance
for the design, construction, and operation of the commercial-scale LPMEOH™ demonstration
unit by The Partnership. Air Products designed and constructed the LPMEOH™ demonstration
unit and Eastman operated it. The demonstration unit is a nominal 260 ton-per-day (or 80,000
gallon per day) unit situated on a 0.6 acre plot within the existing Eastman chemicals-from-coal
complex in Kingsport, Tennessee.

The Eastman coal gasification facility has operated commercially since 1983. Eastman currently
both produces and purchases methanol for use at the site. At this site, it was possible to perform
studies that demonstrate the unique load-following flexibility of the LPMEOH™ demonstration

unit for application to coal-based IGCC electric power generation facilities.

This project has also completed design verification testing (DVT), including laboratory- and
pilot-scale research and market verification studies, to evaluate whether to include a
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demonstration of the production of dimethyl ether (DME) as a mixed coproduct with methanol.
DME has several commercial uses. In a storable blend with methanol, the mixture can be used
as a peaking fuel in gasification-based electric power generating facilities, or as a diesel engine
fuel. Blends of methanol and DME can be used as chemical feedstocks for synthesizing
chemicals, including new oxygenated fuel additives.

1.2.2 Project Organization

As noted above, Air Products and Eastman formed the Partnership to execute the LPMEOH™
Demonstration Project. The Partnership subcontracted with Air Products to provide the overall
management of the project, and to act as the primary interface with DOE. As subcontractor to
the Partnership, Air Products provided the engineering design, procurement, construction, and
commissioning of the LPMEOH™ demonstration unit, and provided the technical and
engineering supervision needed to conduct the operational testing program required as part of the
project. As subcontractor to Air Products, Eastman was responsible for operation of the
LPMEOH™ demonstration unit, and for the interconnection and supply of syngas, utilities,
product storage, and other needed services. Air Products also issued subcontracts for and
managed the projects within the off-site testing of methanol from the LPMEOH™ Process.
These roles and responsibilities are summarized in Figure 1.2.2-1.

Figure 1.2.2-1
LPMEOH™ Demonstration Project Organization
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1.2.3 Project Description

Air Products developed the two technologies that were demonstrated at various engineering
scales during this demonstration project with the financial support of the DOE. The LPMEOHU
Process uses a slurry bubble column reactor to convert coal-derived syngas to methanol.
Because of its superior heat management, the process can directly utilize the carbon monoxide
(CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes,
or other hydrocarbon feedstock. When added to a high-efficiency IGCC power plant, the
LPMEOHU Process converts a portion of the CO-rich syngas produced by the gasifier to
methanol, and the unconverted gas is used to fuel the gas turbine combined-cycle power plant.
The LPMEOH™ Process can also be applied to the conversion of syngas derived from natural
gas. A block diagram showing the integration of the LPMEOH™ demonstration unit within the
Eastman chemicals-from-coal complex is provided in Figure 1.2.3-1.

The Liquid Phase Dimethyl Ether (LPDMET™) Process uses a physical mixture of a commercial
methanol catalyst and a commercial dehydration catalyst in a single slurry reactor to coproduce
DME with methanol. This process provides high syngas conversion, efficient heat transfer, and
directly converts a variety of syngas compositions.

1.2.4 Site

The demonstration unit, which occupies an area of 0.6 acre, is integrated into the existing 4,000-
acre Eastman chemicals-from-complex located in Kingsport, Tennessee. The Eastman complex
employs approximately 8,600 people. In 1983, Eastman constructed a coal gasification facility
utilizing Texaco technology. The syngas generated by this gasification facility is used to
produce carbon monoxide and methanol. Both of these products are used to produce methyl
acetate and ultimately cellulose acetate and acetic acid. The availability of this highly reliable
coal gasification facility was the major factor in selecting this location for the LPMEOH™
demonstration unit. An aerial photograph of Eastman’s chemicals-from-coal complex is
provided in Figure 1.2.4-1.

Three different feed gas streams (H, Gas, CO Gas, and the primary syngas feed known as
Balanced Gas) are available from existing operations to the LPMEOH™ demonstration unit, thus
providing the range of coal-derived syngas ratios (H, to CO) needed to meet the technical
objectives of the demonstration project.
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Figure 1.2.3-1
Integration of Existing Facilities with LPMEOH™ Demonstration Unit
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Figure 1.2.4-1
Photograph of Eastman Chemical Company’s Chemicals-from-Coal Complex

1.2.5 Project Schedule

The project was divided into the following three phases:

Design
Construction
Operation

The design phase included all of the engineering needed to construct the demonstration unit.
This activity started in October of 1993 and was completed in early 1996. The construction
phase started in October of 1995 and included the fabrication of the equipment and the field
construction tasks (foundations, steel erection, etc.). The demonstration unit was commissioned
in March of 1997. The startup was extremely smooth, as demonstrated by the rapid progression
from first introduction of syngas (02 April 1997) to stable operation at design conditions (06
April 1997) to a test at 115% of the design production rate of methanol (10 April 1997). The
startup also proceeded without injury or environmental incidents.

Based upon the original timetable for the project, the four-year demonstration test period was
scheduled to be completed on 31 March 2001, with project close-out to be concluded by 31
December 2001. However, operational issues were encountered with the gas sparger within the
LPMEOH™ reactor and with the impact of trace contaminants present in the coal-derived
syngas on the long-term performance and life of the methanol synthesis catalyst. Additional
information on these items is provided in Section 3.1 of this report. The time required to study
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and develop solutions to these technical challenges adversely impacted the ability to execute the
Demonstration Test Plan according to the original schedule.

During the project execution, an update on the economics of the coproduction of methanol with
electric power via the LPMEOH™ Process was performed. During these studies, modes of
operation that had not been anticipated during the development of the original Demonstration
Test Plan were identified. One example was the development of a procedure to activate the
methanol synthesis catalyst within the LPMEOH™ reactor by using syngas which is diluted with
nitrogen (N,) (known as in-situ activation). If the separate processing equipment to activate
catalyst on a batch-wise basis could be eliminated, a capital cost savings of about 10% would be
realized. Also, operating the LPMEOH™ reactor at low temperatures at the outset and slowly
increasing temperature with time to maintain a constant production of methanol can extend the
life of the methanol synthesis catalyst.

Based upon these results, Air Products, on behalf of the Partnership, requested a 15-month no-
cost time extension on 25 February 2000. This extension was necessary to complete some of the
key tests which were originally defined in the September 1996 Demonstration Test Plan, and to
allow the opportunity to perform the new tests of significant commercial interest. The extension
was approved by DOE on 24 April 2000 and accepted by Air Products on behalf of the
Partnership on 08 May 2000. Air Products submitted the first draft for the update to the
Demonstration Test Plan on 15 May 2000; the final version was approved by DOE on 15
February 2001.

Over the next year, significant progress was made toward achieving the objectives for operation
of the LPMEOH™ demonstration unit during the 15-month period of extended operation. A
new commercially available adsorbent material was charged into the catalyst guard bed within
the LPMEOH™ demonstration unit, pretreated to remove oxygen (O;), and brought on stream;
initial results for the removal of arsenic from the Balanced Gas feed met performance
expectations. Tests on operation in load-following and on-off modes, which are expected to
occur in an IGCC complex where both methanol and electric power are produced, were
successfully completed. Additional test campaigns on CO-rich syngas were performed. In
August of 2001, the first test of the in-situ activation procedure was performed. Initial catalyst
performance was less than the value expected from experiments in the laboratory.

Based upon this continued progress, Air Products, on behalf of the Partnership, requested an in-
scope technical redirection of funds on 01 February 2002. Pending results from a laboratory
assessment, the Partnership was considering a recommendation to DOE that a second attempt to
perform the in-situ catalyst activation procedure may be warranted. Based upon the redirection
of the available project funds and the time necessary to complete the laboratory studies,
implement changes, perform the in-situ activation, and assess the results, it was expected that
demonstration operations could be supported through December of 2002. Project closeout
activities would be completed by the project end date of 31 March 2003 (the project was
extended to 30 June 2003 to allow for completion of all technical reports). DOE approved this
in-scope technical redirection on 08 March 2002. Based upon this redirection, the list and
schedule of tests within the Demonstration Test Plan was updated; these changes are discussed in
Section 4.1. As detailed in Section 5.6.4, the performance following the second in-situ
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activation of catalyst matched the performance expected with properly activated catalyst from
the laboratory autoclave.

The operating phase for the LPMEOH™ Demonstration Project was concluded on 31 December
2002. The final schedule, including activities associated with Design Verification Testing
(DVT) of DME and the off-site fuel use testing program for stabilized methanol, is provided in
Figure 1.2.5-1.

1.3 OBJECTIVES OF THE PROJECT

1.3.1 Primary Objective

The LPMEOH™ Process technology is expected to be commercialized as part of an IGCC
electric power generation system. Therefore, the project incorporates the commercially
important aspects of the operation of the LPMEOH™ Process which would enhance IGCC
power generation. These include the following:

* The coproduction of electric power and of high value liquid transportation fuels and/or
chemical feedstocks from coal. This coproduction requires that the partial conversion of
syngas to storable liquid products be demonstrated.

* Using an energy load-following operating concept which allows conversion of off-peak
energy, at attendant low value, into peak energy commanding a higher value. The load-
following concept makes use of gasifier capacity that is under utilized during low-demand
periods by using the LPMEOH™ Process to convert the excess syngas to a storable liquid
fuel for use in electric power generation during the peak energy periods. This operating
concept requires that on/off and electrical load following capabilities be demonstrated.

During operation, the instrumentation system allowed for the collection of engineering data,
analysis, and reporting which was done by technical personnel. Typical reporting included on-
stream factors, material and energy balances, reactor and equipment performance, comparison
with laboratory and AFDU results, conversion efficiencies, and catalyst activity. The resulting
database will be used to quantitatively evaluate the LPMEOH™ Process technology compared to
other commercially available methanol synthesis process technologies.

1.3.2 Secondary Objective

A secondary objective of the project was to demonstrate the production of DME as a mixed
coproduct with methanol.

Subject to successful DVT, the Partnership proposed to enhance the project by including the
demonstration of the slurry reactor’s capability to produce DME as a mixed coproduct with
methanol. DVT was required to address issues such as catalyst activity and stability and to
provide data for engineering design and demonstration decision making.
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1.4 SIGNIFICANCE OF THE PROJECT

This project demonstrated the commercial viability of Air Products’ LPMEOH™ Process using
coal-derived syngas, a mixture of H, and CO. The DOE’s purpose for the demonstration project
was to help fulfill the goals and objectives of the Clean Coal Technology Program by
demonstrating the potential of a more efficient, liquid-phase reaction process as a preferred
alternative to gas-phase reactions for methanol production.

The United States needs future sources of alternative liquid fuels. With domestic oil production
declining and imports increasing, the potential of producing affordable liquid fuels from non-
petroleum sources could one day prove both strategically and economically important. The
LPMEOH™ Process offers an extremely attractive route to supplementing liquid fuel supplies
with methanol made from abundant coal reserves in the United States.

Methanol has a broad range of commercial applications. It can be substituted for or blended
with gasoline to power vehicles. It is an excellent fuel for the rapid-start combustion turbines
used by utilities to meet peak electricity demands. It contains no sulfur and has exceptionally
low NOy characteristics when burned. It is also used as a chemical feedstock.

The technology that has now completed the demonstration operations phase is ideally suited as
an adjunct to a coal-based IGCC power plant - one of the cleanest and most efficient of the 21st
century power generating options. When the power plant is not generating at its full capacity,
excess syngas can be diverted to make methanol. The methanol could be stored on-site and used
in peaking turbines or sold as a commercial fuel or chemical feedstock. In this configuration, the
cost of making methanol from coal is likely to be competitive with stand-alone natural gas-to-
methanol facilities.

The project objectives were to demonstrate the scaleup and operability of the LPMEOH™
Process under various coal-based feed gas compositions and to gain operating experience for
future syngas conversion projects. DVT was also performed to evaluate the potential
demonstration of the production of DME from syngas as a mixed coproduct with methanol.

The LPMEOH™ Process offers significant potential to economically produce methanol (using a
technology developed in the United States over conventional technologies) and to reduce electric
power generation costs with the production of alternative liquid fuels. The domestically
developed LPMEOH™ technology can utilize the abundant coal reserves of the United States to
produce clean, storable, liquid fuels and chemical feedstocks. Eventual commercialization of the
LPMEOH™ Process in IGCC power plants would provide low priced chemical feedstocks and
fuel leading to electric power generation cost savings, lower SO, and NOy emissions, and the
reduced use of imported liquid fuels.
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1.5 DOE’S ROLE IN THE PROJECT

1.5.1 Clean Coal Technology Program

The DOE’s Clean Coal Technology Program has been implemented through five competitive
solicitations. Congress set the basic goals for the program and for each solicitation in the
enabling legislation and accompanying report language. DOE subsequently translated the
guidance into performance-oriented solicitations. For each solicitation, evaluation criteria were
defined and weighted to reflect specific congressional guidance and the current program
objectives. This process enabled industry to set the technical agenda by allowing companies to
propose their own technologies as qualifying projects. This had the significant benefit of
attracting higher levels of private-sector cost-sharing and increasing the likelihood of realizing
commercialization objectives.

An important attribute to the solicitation approach used to implement the program was the use of
multiple solicitations spread over a number of years. Allowing time between solicitations made
it possible to adjust program objectives. At the end of each solicitation, Congress provided the
flexibility as needed to effectively implement the program.

Each solicitation was issued as a Program Opportunity Notice (PON). Proposals for
demonstration projects consistent with the objectives of each PON were submitted to DOE by a
specific deadline. DOE evaluated the proposals and announced those projects selected for
negotiation.

The objective of the Round III was to solicit cost-shared clean coal technology projects to
demonstrate innovative, energy-efficient technologies capable of being commercialized in the
1990’s. These technologies were to be capable of (1) achieving significant reductions in
emissions of SO, and/or NO, from existing facilities to minimize environmental impacts, such as
transboundary and interstate pollution, and/or (2) providing for future energy needs in an
environmentally acceptable manner. DOE received 48 proposals and selected 13 projects as best
furthering the goals and objectives of the PON.

The LPMEOH™ Demonstration Project was selected in December of 1989 under Round III of
the Clean Coal Technology Program.

1.5.2 Management Plan

The DOE entered into a Cooperative Agreement with Air Products and Chemicals, Inc., which
was later novated to the Partnership (between Air Products and Eastman) to conduct the project.
The DOE monitored the project through the Contracting Officer and the Contracting Officer’s
Technical Representative (COTR). The Partnership managed the project through an Air
Products Program Manager, who was assisted by a team of technical and managerial personnel
from Air Products and from Eastman.
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The organizational chart for the design and construction phases is included in the Public Design
Report (Final Report - Volume 1). The organizational chart for the operating phase is shown in
Figure 1.5.2-1.

1.5.2.1 DOE

The DOE was responsible for monitoring all aspects of the project and for granting or denying
approvals required by the Cooperative Agreement. The DOE Contracting Officer was the
authorized representative of the DOE for all matters related to the Cooperative Agreement.

The DOE Contracting Officer appointed a COTR, who was the authorized representative for all
technical matters and had the authority to issue “Technical Advice.” The COTR also approved
those reports, plans, and technical information required under the Cooperative Agreement. The
DOE COTR did not have the authority to issue any technical advice that assigned additional
work outside the Statement of Work, increased or decreased the total estimated cost or time
required for performance of the Cooperative Agreement, changed any of the terms, conditions,
or specifications of the Agreement, or interfered with The Partnership’s right to perform the
terms and conditions of the Agreement. All Technical Advice was issued in writing by the DOE
COTR.

1.5.2.2 The Partnership

The Air Products Program Manager coordinated the overall project and was responsible for all
communication with the DOE and for interfacing with the DOE COTR.

The Air Products Program Manager was the primary focal point for this project having
responsibility and authority for direction of the project subsequent to the signing of the
Cooperative Agreement. The Air Products Program Manager was the principal representative
between the Partnership and the DOE.

The Program Manager’s responsibilities encompassed both technical and fiscal considerations,
including the following:

e Overall technical coordination of the program

*  Monitoring of program cost

*  Monitoring of program planning

*  Monitoring of program schedule

* Commitment of resources to optimize performance under the Cooperative Agreement
* Reporting requirements

* Final review of all contract deliverables

Throughout the course of this project, reports dealing with technical, cost, and environmental
aspects of the project were prepared by the Partnership and provided to DOE.
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Figure 1.5.2-1
Kingsport LPMEOH™ Demonstration Project
Operating Phase Organization Chart
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2.0 TECHNOLOGY DESCRIPTION

2.1 DESCRIPTION OF THE DEMONSTRATED TECHNOLOGY

Methanol is a versatile commodity chemical with applications ranging from fuels to feedstocks
for higher valued chemicals such as methyl methacrylate and methyl tertiary-butyl ether (MTBE,
an octane booster). Many applications have evolved for methanol as a fuel including methanol
as a gasoline extender, the methanol to gasoline process, methanol as a feedstock to fuel cell
systems, and IGCC technology for the coproduction of methanol and electricity.

The LPMEOH™ Process represents a major departure from traditional gas-phase routes to
methanol in the method of removing the heat of reaction. The reactions of H, and CO and
carbon dioxide (CO,) to form methanol are highly exothermic.

CO +2H, — CH;0H +21.7 KCAL/gmol

CO; +3H, — CH;0H + H,O + 12.8 KCAL/gmol

TYPICAL REACTION CONDITIONS:
1,000 psig
440°-520°F

One of the most difficult design problems of the methanol synthesis process is removing the heat
of reaction while maintaining precise temperature control to achieve optimum catalyst life and
reaction rate. Catalyst life is seriously reduced by excessive temperatures.

Reactor schematics for conventional gas-phase reactors are shown in Figure 2.1-1. The catalyst
is in the form of pellets. In these conventional gas-phase reactors, either cool unreacted gas is
injected at stages in the catalyst bed, or internal cooling surfaces are used to provide temperature
control. These schemes, however, were developed for diluted syngas which yields low
conversion per pass. The LPMEOH™ Process (Figure 2.1-2) uses fine catalyst particles
entrained in an inert hydrocarbon liquid, usually a mineral oil. The mineral oil acts as a
temperature moderator and a heat removal medium, transferring the heat of reaction from the
catalyst surface via the liquid slurry to boiling water in an internal tubular heat exchanger. As a
result of this capability to remove heat and maintain a constant, highly uniform temperature
through the entire length of the reactor, the slurry reactor can achieve much higher syngas
conversion per pass than its gas-phase counterparts.

In addition, the LPMEOH™ Process is particularly well suited to coal-derived syngas which is
rich in CO. These capabilities make the LPMEOH™ Process a potentially lower-cost
conversion route to methanol, especially when methanol coproduction is added to a coal-based
IGCC power plant. For a modest increase in complexity of an IGCC power plant, the methanol
coproduction scheme produces a storable liquid fuel in parallel with electric power production,
providing a significant turndown and peak-load capability for the IGCC power plant.
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Figure 2.1-1
Gas-Phase Methanol Reactors
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Information on the application of the LPMEOH™ Process to the IGCC power plant is provided
in Section 9 of this report.
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2.2 DESCRIPTION OF THE DEMONSTRATION FACILITY

The reactor used in the LPMEOH™ Process is unlike conventional gas-phase reactors that use
fixed beds of catalyst pellets and largely depend upon recycle diluent gas to both dilute the CO
concentration and control the temperature rise caused by the heat of reaction. The LPMEOH™
reactor is a slurry reactor with small, powder-size catalyst particles suspended in inert mineral
oil. The syngas bubbles up through the slurry where the H, and CO dissolve in the oil and
diffuse to the catalyst surface where the methanol reaction occurs. The product methanol
diffuses out of the slurry and exits as a vapor with the unreacted syngas. The inert oil acts as a
heat sink and permits isothermal operation. The net heat of reaction is removed via an internal
heat exchanger which produces steam. Unlike gas-phase reactors that limit per-pass conversion
of syngas to methanol to accommodate the reaction exotherm, the LPMEOH™ reactor maintains
isothermal operation. The methanol vapor leaves the reactor and is condensed to a liquid, sent to
distillation columns for removal of higher alcohols, water (H,O), and other impurities, and is
then stored in lot tanks for sampling prior to being sent to Eastman's methanol storage. A
portion of the unreacted syngas is sent back to the reactor with the recycle compressor,
improving cycle efficiency. The methanol is used for downstream feedstocks and for off-site
fuel-use testing.

Unlike gas-phase reactors, the LPMEOH™ reactor is tolerant to CO-rich gas. Shift and CO,
removal are not required. Low H»-to-CO ratios are acceptable as is any CO; content. Finally, in
contrast to the gas-phase reactor in which the catalyst is sensitive to flow variations and changes
from steady-state, the LPMEOH™ reactor is eminently suited for load-following and on/off
operation in electrical generating applications.

The LPMEOH™ demonstration unit is integrated with Eastman's coal gasification facility and
inserted in parallel with an existing gas-phase methanol unit.

No new equipment items were added to the LPMEOH™ demonstration unit during the operating
phase; however, a different design for the pump used to add fresh mineral oil to the process was
installed to replace the pumps from the original design. Also, Air Products developed two
alternative designs for the gas sparger within the LPMEOH™ reactor, the last of which has been
in service since March of 1999. The adsorbent material in the catalyst guard bed within the
LPMEOH™ demonstration unit was also changed to remove arsine in addition to metal
carbonyls, and changes were made to the piping and instrumentation system around this catalyst
guard bed to allow for the new adsorbent to be pretreated prior to use in the process. Details on
the changes can be found in Section 3.0 of this report.

2.3 PROPRIETARY INFORMATION

As noted in Section 1.1, the scope of this report is limited to nonproprietary information.
Therefore, although its content is insufficient to provide a complete tool for designing a
LPMEOH™ unit, it will serve as a reference for the design considerations involved in
developing a commercial-scale facility.
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2.4 SIMPLIFIED PROCESS FLOW DIAGRAM

The LPMEOHO demonstration unit consists of five main process sections: Feed Gas
Purification, Compression, Reactor Loop and Catalyst Reduction, Distillation, and Storage and
Miscellaneous. The Feed Gas Purification area includes the feed gas supply tie-ins and a catalyst
guard bed. The Compression area contains the recycle gas compressor and associated systems.
The Reactor Loop and Catalyst Reduction area includes the reactor with its associated equipment
and the slurry handling equipment and utility oil skid associated with catalyst preparation. The
Distillation area includes two distillation columns and heat exchangers. The Storage and
Miscellaneous area comprises oil storage and other process components. A detailed description
of these sections is provided in Section 4.3 of the Public Design Report (Final Report - Volume
1). A block diagram for the LPMEOHL demonstration unit is provided in Figure 2.4-1. A
glossary of syngas terminology is provided in the beginning of this document.

2.5 STREAM DATA

Table 2.5-1 shows the material balance for the points shown on Figures 1.2.3-1 and 2.4-1.

2.6 PROCESS AND INSTRUMENTATION DIAGRAMS

A set of Process and Instrumentation Diagrams (P&ID’s) can be found in Appendix A of the
Public Design Report (Final Report - Volume 1).
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Figure 2.4-1
LPMEOH™ Demonstration Unit Simplified Process Flow Diagram
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Table 2.5-1
Heat and Material Balance Summary

CASE L:\ kingsprt\ hmb\ 1feb 95\ design

Stream No. 10 109 120 148 149 20 204
Press PS 875.0 785.0 735.0 722.0 722.0 765.0 85.0
Temp C 37.8 169.5 1211 40.5 40.5 37.8 40.1
Temp F 100.0 3371 249.9 105.0 105.0 100.0 104.2
Lbmol/hr

H2 2.636 4402.484 2967.899 252.163 2712.126 77.996 3.610
CcO 127.846 1818.957 1121.754 95.167 1023.566 11.594 3.021
N2 1.318 293.947 294.054 24.922 268.047 12.648 1.084
Cc0o2 0.000 654.744 635.137 51.831 557.470 3.162 25.836
MEOH 0.000 42.496 744.457 3.952 42.504 0.000 698.001
DME 0.000 3.790 5.057 0.353 3.796 0.000 0.909
H20 0.000 0.448 21.642 0.042 0.448 0.000 21.152
ETOH 0.000 0.016 0.447 0.002 0.016 0.000 0.429
C30H 0.000 0.001 0.065 0.000 0.001 0.000 0.063
C40H 0.000 0.000 0.026 0.000 0.000 0.000 0.026
IBOH 0.000 0.001 0.087 0.000 0.001 0.000 0.086
C50H 0.000 0.000 0.018 0.000 0.000 0.000 0.018
MEAC 0.000 0.065 0.242 0.006 0.065 0.000 0.171
MEFM 0.000 1.256 2.790 0.117 1.259 0.000 1.415
C1 0.000 12.228 13.449 1.137 12.234 0.000 0.077
c2 0.000 3.549 3.982 0.331 3.557 0.000 0.095
C3 0.000 1.007 1.171 0.094 1.010 0.000 0.067
OlL 0.000 0.000 0.032 0.000 0.000 0.000 0.032
Total molar flow 131.8 7235.0 5812.3 430.1 4626.1 105.4 756.1
Total massflow |Ib/hr 3,623 98,846 98,686 6,337 68,154 975 24,195
Enthalpy MMBtu/h -6.083 -188.288 -221.879 -13.674 -147.071 -1.066 -79.011
mol%

H2 2.000 60.850 51.062 58.627 58.627 74.000 0.477
Cco 97.000 25.141 19.300 22.126 22.126 11.000 0.400
N2 1.000 4.063 5.059 5.79%4 5.794 12.000 0.143
Cc02 0.000 9.050 10.927 12.051 12.051 3.000 3.417
MEOH 0.000 0.587 12.808 0.919 0.919 0.000 92.317
DME 0.000 0.052 0.087 0.082 0.082 0.000 0.120
H20 0.000 0.006 0.372 0.010 0.010 0.000 2.797
ETOH 0.000 0.000 0.008 0.000 0.000 0.000 0.057
C30H 0.000 0.000 0.001 0.000 0.000 0.000 0.008
C40H 0.000 0.000 0.000 0.000 0.000 0.000 0.003
IBOH 0.000 0.000 0.001 0.000 0.000 0.000 0.011
C50H 0.000 0.000 0.000 0.000 0.000 0.000 0.002
MEAC 0.000 0.001 0.004 0.001 0.001 0.000 0.023
MEFM 0.000 0.017 0.048 0.027 0.027 0.000 0.187
C1 0.000 0.169 0.231 0.264 0.264 0.000 0.010
c2 0.000 0.049 0.069 0.077 0.077 0.000 0.013
C3 0.000 0.014 0.020 0.022 0.022 0.000 0.009
OlL 0.000 0.000 0.001 0.000 0.000 0.000 0.004
Total 100 100 100 100 100 100 100
Vapor Fraction 1.000 1.000 1.000 1.000 1.000 1.000 0.025
Liquid Fraction 0.000 0.000 0.000 0.000 0.000 0.000 0.975
Mol. Wt. Mix 27.490 13.662 16.979 14.733 14.733 9.255 32.000
Mol. Wt. Vapor 27.490 13.662 16.979 14.733 14.733 9.255 32.286
Mol. Wt. Liquid 31.992
Density LB/ CUFT 4.092 1.206 1.621 1.701 1.701 1.114 13.386
Vapor Density |LB/CUFT 4.092 1.206 1.621 1.701 1.701 1.114 0.461
Liquid Density |LB/CUFT 48.981
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Table 2.5-1
Heat and Material Balance Summary (cont’d)

CASE L:\ kingsprt\ hmb\ 1feb95\ design
Stream No. 213 216 242 30
Press PS 40.0 80.0 790.0
Temp C 40.7 100.8 37.8
Temp F 105.3 213.4 100.0
Lbmol/hr
H2 3.610 0.000 0.000 1608.013
Cco 3.021 0.000 0.000 656.961
N2 1.084 0.000 0.000 11.859
C0o2 25.836 0.000 0.000 94.868
MEOH 3.601 520.901 173.499 0.000
DME 0.909 0.000 0.000 0.000
H20 0.013 0.054 21.084 0.000
ETOH 0.000 0.043 0.386 0.000
C30H 0.000 0.000 0.063 0.000
C40H 0.000 0.000 0.026 0.000
IBOH 0.000 0.000 0.085 0.000
C50H 0.000 0.000 0.018 0.000
MEAC 0.170 0.002 0.000 0.000
MEFRM 1.415 0.000 0.000 0.000
C1 0.077 0.000 0.000 0.000
C2 0.095 0.000 0.000 0.000
C3 0.067 0.000 0.000 0.000
OlL 0.000 0.000 0.032 0.000
Total molar flow 39.9 521.0 195.2 2371.7
Totalmassflow |Ib/hr 1,621 16,694 5,980 26,150
Enthalpy MMBtu/hn -5.147 -563.303 -19.938 -46.877
mol%
H2 9.048 0.000 0.000 67.800
Cco 7.572 0.000 0.000 27.700
N2 2.718 0.000 0.000 0.500
C0o2 64.755 0.000 0.000 4.000
MEOH 9.026 99.981 88.885 0.000
DME 2.278 0.000 0.000 0.000
H20 0.033 0.010 10.802 0.000
ETOH 0.001 0.008 0.198 0.000
C30H 0.000 0.000 0.033 0.000
C40H 0.000 0.000 0.013 0.000
IBOH 0.000 0.000 0.044 0.000
C50H 0.000 0.000 0.009 0.000
MEAC 0.425 0.000 0.000 0.000
MERM 3.546 0.000 0.000 0.000
C1 0.193 0.000 0.000 0.000
Cc2 0.237 0.000 0.000 0.000
C3 0.168 0.000 0.000 0.000
OlL 0.000 0.000 0.017 0.000
Total 100 100 100 100
Vapor Fraction 1.000 0.000 0.000 1.000
Liquid Fraction 0.000 1.000 1.000 0.000
Mol. Wt. Mix 38.132 32.042 30.634 11.026
Mol. Wt. Vapor -0.003 11.026
Mol. Wt. Liquid 32.042 30.634
Density LB/ CUFT 48.306 45.200 1.377
Vapor Densty |LB/CUFT 1.377
Liquid Density |LB/CUFT 48.306 45.200
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3.0 UPDATE OF THE PUBLIC DESIGN REPORT

3.1 DESIGN AND EQUIPMENT CHANGES

Over the first three years of operation, the LPMEOH™ demonstration unit achieved an
availability in excess of 97%. Engineering data was collected and analyzed so that the
engineering tools that are — R

necessary for the design of
larger-scale LPMEOH™ plants
could be improved. Much of
the work associated with
process optimization was
completed, and ideas to reduce
the number of rotating
equipment items which
simplify the process were
successfully implemented.

Thu .

%

-
L i

o L

Early performance of the
proprietary gas sparger within
the LPMEOH™ reactor (7.5’
internal diameter) met
expectations for gas
distribution and reactor
hydrodynamics, but the
pressure drop across the device increased over time. Ultimately, the flow resistance across the
sparger reached a value that severely limited the quantity of syngas that could be processed.
After some proprietary studies conducted by Air Products, two updated spargers, designed by
Air Products and fabricated by Eastman for the Partnership, were placed into service, the latest
being in March of 1999. As detailed in Section 5.3, this device has shown excellent
performance, with no increase in pressure drop over time.

050 8 8¢

Another technical challenge was the impact of trace contaminants present in the coal-derived
syngas (which is the primary feedstock to the LPMEOH™ reactor) on the long-term
performance and life of the methanol synthesis catalyst. These species, which are typically
found in coal and are present in syngas streams in parts-per-billion levels, reduce the life of the
catalyst, thus adversely affecting the economics of the LPMEOH™ Process. During the first
year of operation, the rate of deactivation of the methanol synthesis catalyst was significantly
higher that the target value which had been previously determined in a 4-month proof-of-concept
test at the LaPorte AFDU. Significant progress was made in identifying both the species of
catalyst poisons present in the syngas and the adsorbents which, when used upstream in the
catalyst guard bed vessels, can effectively and economically remove these contaminants.
Additional information is provided in Section 5.2.
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3.1.1 Condensed Oil (29G-01) and Oil Makeup (29G-03) Pumps

During plant commissioning activities, two sets of pumps required additional attention and
impacted the mode of operation of the LPMEOH™ demonstration unit during startup.

The 29G-01 condensed oil pumps were designed to return condensed and entrained oil and
catalyst from the 29C-05 secondary oil knock-out drum and 29C-06 cyclone to the 29C-01
LPMEOH™ reactor. A twin-screw design was selected due to the potential for high solids
loadings at reactor temperatures and pressures. The 29G-03 oil make-up pumps were intended to
provide seal flush to the condensed oil pumps, oil addition to the reactor loop, and high-pressure
(1,100 psig) piping flush oil. The pumps also employed a twin-screw design with extremely
tight clearances to generate high pressure differential, as the make-up oil was stored in the 29D-
30 oil storage tank at low pressure (less than 10 psig). During initial commissioning activities in
January of 1997, these pumps operated well during testing at the required discharge pressure of
700 to 900 psig. However, during subsequent testing, both oil make-up pumps exhibited
difficulty in delivering oil at the required pressure. Notably, since the oil make-up pumps could
not function at rated conditions to supply the necessary seal flush, the condensed oil pumps
could not operate at full suction pressure.

During the plant design phase, in anticipation of operating problems with the condensed oil
pumps, the elevation of the slurry collection equipment (secondary oil knock-out drum and
cyclone) was raised high enough to permit any entrained or condensed material to gravity-drain
back to the reactor. Because of the inability of the oil make-up pumps to provide seal flush for
the condensed oil pumps, operation in the free-draining mode began at startup, and initial results
were positive. Fresh make-up oil was added to the process by using the 29G-30 slurry transfer
pump, which was designed to transfer catalyst slurry from the 29C-30 catalyst reduction vessel
to the LPMEOH™ reactor. The slurry transfer pump packing also requires flush from the oil
make-up pumps; however, it was determined that operation of the slurry transfer pump in clean-
oil service without packing flush would not adversely affect the service life of the pump.
Accordingly, make-up oil was batch-transferred from the oil storage tank to the catalyst
reduction vessel, and then pumped to the reactor by the slurry transfer pump.

The gravity-drain line did exhibit intermittent plugging or vapor-locking during operation. Early
in the operating campaign, blockages could be cleared by opening a utility line between the
secondary oil knock-out drum and the catalyst reduction vessel and briefly blowing down to low
pressure; piping connections to provide flush oil were rendered useless by the inoperable high-
pressure oil make-up pumps. However, on 25 April 1997, a blockage occurred in the free-drain
line that could not be removed by this method. Since the solids concentration of the condensed
and entrained oil and catalyst slurry was relatively low, it was determined that the slurry transfer
pump could pump this material without a packing flush on the pump. Condensed oil was batch-
transferred from the secondary oil knock-out drum to the catalyst reduction vessel, and then
pumped to the reactor. The frequency of the transfer to the catalyst reduction vessel was about
once every three hours, and the catalyst reduction vessel was pumped to the reactor about once
every 10 hours. The calculated accumulation rate of condensed and entrained slurry (1.5 to 2.0
gpm) matched the expected liquid traffic within the oil/catalyst collection equipment. This early
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operating experience confirmed that the ability to flush piping systems in slurry service was an
important operability requirement.

After an engineering review by Air Products and Eastman, a new 29G-03 oil make-up pump was
specified with a simpler design than the original twin-screw configuration. Only one of these
new pumps was purchased and installed to develop operational experience at minimum capital
cost. The new pump, priced at $7,900, was brought online in October of 1997 and met all
operational requirements. The availability of this pump to flush out periodic blockages in the
gravity-drain line established the viability of that concept to return condensed and entrained
slurry to the LPMEOH™ reactor, and as a result, the condensed oil pumps were not put into
service under operating conditions. The potential benefits are tremendous for future designs,
including: significant capital cost savings from the elimination of two slurry pumps and their
ancillaries (and perhaps the redundant oil make-up pump); increased operating flexibility; and
lower maintenance costs by eliminating the seal system for the slurry pumps.

The long-term success of the gravity-draining system to return entrained slurry and condensed
oil to the LPMEOH™ reactor eliminated the need for the condensed oil pumps and their
continuous seal flush requirement. As a result, the single oil make-up pump has continued to
operate in batch mode only. In this mode, the pump has added oil to the LPMEOH™ Process to
provide flush oil to piping and instrumentation associated with the LPMEOH™ reactor and
cyclone; the amount of flush oil can be optimized to match the required amount of make-up oil
that is necessary to overcome the average oil loss rate with the methanol product (nominally 0.1
to 0.2 gpm). The new pump has operated well in over five years of operation in this batch mode.

3.1.2 Slurry Return Pump (29G-02)

During the initial startup of the LPMEOH™ demonstration unit, individual batches of methanol
catalyst slurry were activated in the 29C-30 catalyst reduction vessel and then pressure-
transferred into the 29D-02 slurry tank. After activation of the ninth and final batch, the entire
charge was to be pumped from the slurry storage tank to the reactor using the 29G-02 slurry
return pump. This pump included a packing design which required a continuous flush of clean
oil from the oil storage tank using the 29G-34 oil feed pump. During the transfer operation, seal
oil leaked through the packing at a significantly higher rate than expected. If this condition had
continued throughout the transfer, the oil would have diluted the slurry considerably, perhaps to
the point of overfilling the reactor vessel. The operations team decided to apply N, at 45-50 psig
to the slurry tank and pressure-transfer the remaining slurry to the reactor. This procedure was
accomplished successfully, and the technique was used for all remaining slurry transfer steps
when the slurry tank was utilized. This pump will be eliminated in future designs, providing an
opportunity for capital savings and improved operability.

3.1.3 Availability of Hydrogen Gas (H, Gas)

During the design phase for the LPMEOH™ demonstration unit, one of the feed syngas streams
was the purge stream from the existing gas-phase methanol unit (called hydrogen gas or H, Gas).
This stream contained an excess of H, over the stoichiometric balance for the production of
methanol, and was expected to be used to adjust the H,:CO ratio during several of the tests
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within the demonstration test plan. However, due to pressure control issues in the Eastman
chemicals-from-coal complex, the operating pressure for H, Gas had to be reduced to less that
the operating pressure of the LPMEOH™ demonstration unit. As a consequence, H, Gas was
not available as a feed gas. The impact of this change from the plant design basis on the ability
to meet the technical objectives for the LPMEOH™ Demonstration Project was minimal; details
are provided in Section 4.1.

3.1.4 Gas Sparger

Because the performance of a slurry bubble column reactor depends heavily on the method of
introduction of feed gas, the gas sparger design is a key feature of the overall LPMEOH™
reactor design. The gas sparger design for the LPMEOH™ demonstration unit was based on the
device used during the successful 4-month proof-of-concept run at the LaPorte AFDU in
1988/89. In general, the process scaleup from the LaPorte AFDU to commercial scale was a
significant objective for the LPMEOH™ Demonstration Project, and the gas sparger was one of
the key components in this area.

Three different gas sparger designs were utilized during the operation of the LPMEOH™
demonstration unit. The original gas sparger design was used from startup in April of 1997 until
November of 1997. The second gas sparger design was a modification of the first sparger using
similar design principles and was installed in December of 1997. This design was used until
March of 1999. A modified sparger design, again using the same design principles as the
original device, was installed in March of 1999 and was used for the remainder of the
demonstration test program. Details on the performance of the three devices are provided in
Section 5.3.

3.2 DEMONSTRATION PLANT EQUIPMENT COST UPDATE

The updated equipment cost summary for the LPMEOH™ demonstration unit is provided in
Table 3.2-1. The only additional equipment that was purchased during the demonstration period
was the replacement for the 29G-03 oil makeup pump (described in Section 3.1.1). It should be
noted that, if the pumps and associated equipment described in Section 3.1 had not been
installed, the equipment cost of the LPMEOH™ demonstration unit would have been reduced by
almost 5% ($210,000 out of $4.4 million).
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Table 3.2-1
Kingsport LPMEOH™ Demonstration Unit - Update of Equipment Cost Summary

(Dollars in Thousands)

Area  Item Description Total Subtotal
A Feed Gas Purification $77.0 $77.0
B Compression $776.8

Compression $699.6
Exchangers $37.6
Separators $39.6
C Reactor Loop and Catalyst Reduction $2,202.1
Equipment $1,487.8
Exchangers $332.3
Pumps $382.0
D Distillation $703.4
Equipment $309.5
Exchangers $214.7
Tanks $131.3
Pumps and Misc. $47.9
E Storage and Miscellaneous $648.6  $648.6

Total $4,407.9 $4,407.9

3.3 DEMONSTRATION PLANT OPERATING COST UPDATE

Table 3.3-1 summarizes the updated operating costs for the LPMEOH™ demonstration unit. A
new category of costs was added to cover the changeout and disposal of the adsorbent from the
29C-40 carbonyl guard bed (the costs and consumption utilized at the end of the demonstration
period are used in the tabulation of costs). The costs were developed using the performance
following the successful demonstration of the in-situ activation procedure and temperature
programming (details are provided in Section 5.6) to extend the life of the methanol synthesis
catalyst.
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Table 3.3-1
Kingsport LPMEOH™ Demonstration Unit - Update of Operating Costs
Base Year 2002

ANNUAL FIXED OPERATING COST

Number of Operators per Shift 1.5
Number of Shifts per Week 4.2
Operating and Technical Support Labor Rate, $/hr $76.71
Total Annual Operating and Technical Support Labor Cost $671,971
Total Annual Maintenance Labor Cost $510,440
Total Annual Maintenance Material Cost $249,999
Total Annual Administration and Support Labor Cost $1,925,670
TOTAL ANNUAL FIXED O&M COST $3,358,081

VARIABLE OPERATING COST

Commodity Unit $/Unit"  Quantity/hnr  $/hr
Compressed Air 1,000 SCF 0.22 18.00 3.95
Demineralized Water 1,000 Lb 0.66 2,500.00 1.65
Electricity kWh 0.04 770.00 33.82
Filtered Water 1,000 Gal 0.49 0.30 0.15
High Pressure Steam 1,000 Lb 5.49 6.00 32.94
Low Pressure Steam 1,000 Lb 4.94 -1.00 -4.94
Medium Pressure Steam 1,000 Lb 4.39 12.50 54.90
Nitrogen 1,000 SCF 0.66 4.00 2.64
Synthesis Gas 1,000 SCF 4.48 850.00 3,805.62
Catalyst 1Lb 10.29 5.21 53.58
Mineral Oil 1 Gal 3.03 7.18 21.78
Guard Bed Adsorbent (incl. disposal) 1Lb 9.07 2.81 25.52
Waste Water 1 year 15,152.12 1.97
Slurry Reclaiming 1Lb 0.38 7.81 2.95
Distillation of 29C-20 Underflow 1 Gal 0.05 781.25 42.89
Area Services (laboratory, general services) 1 month 86,985.60 135.92
TOTAL VARIABLE OPERATING COST 4,215.33
TOTAL ANNUAL OPERATING HOURS 7,680

FOR DEMONSTRATION

(D _ These unit costs reflect the costs incurred by the Air Products Liquid Phase Conversion Company, L.P. (the

Partnership) and are typical of published utility costs (for example, Process Economics Program Report 136A,
“Plant Utility Costs”, published by SRI International, Menlo Park, CA), and have been indexed for inflation
from 1997 to 2002 using data from the Producer Price Index — Chemicals and Allied Products.
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4.0 DEMONSTRATION PROGRAM

4.1 TEST PLANS

A Demonstration Test Plan® was prepared from the Technical Objectives set for the project.
This original version was comprised of 37 specific tests. These are given in Table 3-2 of the
Public Design Report (Final Report - Volume 1). The conditions imposed by each of these tests
were incorporated in the process design of the LPMEOH™ demonstration unit.

Based upon the results from the initial three years of operation of the LPMEOH™ demonstration
unit as well as the identification of new tests of significant commercial interest, an update to the
Demonstration Test Plan was proposed by Air Products in 2000. The impact of catalyst poisons,
both as post-construction debris and as present in the Balanced Gas feed, on the long-term
performance of the catalyst altered the timeline for completing the objectives as stated in the
Section 1.3.1 of this report. As a result, operating activities were focused upon studying the
effects of catalyst concentration in the reactor (an important parameter in plant economics) on
reactor hydrodynamics. As noted in Section 5.1, the weight of catalyst in the reactor reached a
maximum of 151% of design during this step-wise approach to determining the operating limits
for the slurry bubble column reactor.

Operation of the LPMEOH™ demonstration unit was different relative to the original design
concept, thus eliminating either the ability or the need to complete several of the tests which had
been included in the original Demonstration Test Plan (refer to Table 3.2 of the Public Design
Report [Final Report - Volume 1] for the relevant test number and description):

1) In the original plant configuration, H, Gas was included as one of the feed syngas
streams to the LPMEOH™ demonstration unit. However, as noted in Section 3.1, H,
Gas was not available as a feed gas. This eliminated the ability to complete Test 12.
Tests 13 and 14 also became redundant, as these conditions were covered in other
tests.

2) Based upon the inspection of the cyclone separator and feed/product economizer at
the vapor outlet of the LPMEOH™ reactor, it was concluded that some form of
separation device which limits the flow of entrained slurry from the reactor to the
tubes of the heat exchanger will be required in future designs. This eliminated the
need to perform the portion of Test 19 during which the cyclone would be bypassed.

3) A consequence of increasing the catalyst slurry concentration in the LPMEOH™
reactor beyond the design value was that the extent of conversion of CO was
increased. As the amount of CO is depleted in the reactor effluent and recycle gas
streams, the H,:CO ratio at the reactor feed was increased. Adequate data had
already been acquired at elevated H,:CO ratios such that a separate test for natural
gas reformer-type syngas (Test 24) was no longer required.

4) Since the restart of the LPMEOH™ demonstration unit on the second charge of fresh
catalyst in December of 1997, the majority of operating time was spent at a reactor
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temperature of 235°C. This allowed for additional study of catalyst performance as a
function of operating temperature, which has importance for the LPMEOH™ Process
in applications regarding coal-derived syngas (effect of operating temperature on the
impact of catalyst poisons) and natural gas systems (extending catalyst life in the
absence of poisons).

5) The amount of time allocated in the original Demonstration Test Plan to the study of
catalyst performance above the original design temperature of 250°C was
overestimated. Also, it was not logical to return to lower temperature in the reactor

following operation at elevated temperature; this eliminated the need to perform Test
29.

6) During the operating program for the LPMEOH™ demonstration unit, modes of
operation which were not anticipated during the development of the original
Demonstration Test Plan were identified. The ability to activate the methanol
synthesis catalyst within the LPMEOH™ reactor by using syngas which is diluted
with N; (so-called in-situ activation) can result in capital cost savings of about 10%
by elimination of the separate processing equipment which is used at the
demonstration unit. Also, the life of the methanol synthesis catalyst can be extended
by operating the LPMEOH™ reactor at low temperatures at the outset and slowly
increasing temperature with time to maintain a constant production of methanol (so-
called temperature programming).

A tabulation of the conditions that were operated during the execution of the Demonstration Test
Plan is provided in Table 4.1-1. This shows the test runs and the operating conditions. The time
chart for execution of the Plan is provided in Figure 4.1-1. The changes to the Plan allowed for
the satisfactory completion of the objectives from the Statement of Work while also providing
the ability to perform new tests of significant commercial interest.

4.2 OPERATING PROCEDURES

Summaries of the main procedures associated with the startup, operation, and shutdown of the
LPMEOH™ demonstration unit are provided. The P&ID’s, located in Appendix A of the Public
Design Report (Final Report - Volume 1), contain references to equipment and instrumentation
systems.
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Table 4.1-1
Test Conditions at LPMEOH™ Demonstration Unit

Typical Conditions

H2/CO Fresh MeOH
Run Test Run Temp Wit% Ratio Feed Rate Rate Test Run
# Description (Deg C) Catalyst at Inlet (KSCFH) (TPD) Objective
Task 2.1.1 - Process Shakedown and Catalyst Aging:
1 Initial Shakedown; and 250 31 3.5 833 248 Initial facility start-up and shakedown
Design Production Tests
2 Gassed Slurry Level Data during this period covered within other test runs. Maximize reactor volumetric productivity
3 Reactor Feed: Texaco-Type 250 34 0.78 725 190 IGCC applications; Comparison with
Syngas LaPorte AFDU and laboratory
5 Check @ Test 1 Conditions 250 28 3.5 700 200 Catalyst life; Comparison with
LaPorte AFDU and laboratory
6 Catalyst Addition and Aging 235 36 4.1 750 225 Catalyst life
7 Free-Drain Entrained/ Data during this period covered within other test runs. Enhance system flexibility and
Condensed Oil to Reactor econonic benefit
8 Operation @ Design Feed 235 43 4.0 850 256 Confirmation of operation at design
Gas Rates condition
9 Check for Limitation on 235 49 3.7 750 207 Maximize reactor volumetric productivity
Catalyst Slurry Concentration
10  Catalyst Addition to Reach 235 44 3.5 700 196 Maximize reactor volumetric productivity
Maximum Productivity
Task 2.1.2 - Process Operational Test Phase:
11 Catalyst Withdrawal/ 235 44 3.2 670 190 Catalyst life
Addition Test
21 Reactor Feed: Destec-Type 235 45 1.0 700 200 IGCC applications
Syngas
2000-1 Catalyst Withdrawal/ 235 43 3.2 725 210 Catalyst life
Addition Tests
2000-2 Turndown and Ramping Tests 5% of design syngas flow per minute ramp rate achieved. IGCC applications
2000-3 Load-Following and On/Off Feed gas off for 10-14 hours, plant ramped to re-start. IGCC applications
Tests
2000-4 Reactor Feed: H2/CO =1.0 235 43 1.0 650 180 IGCC applications
2000-5 Reactor Feed: H2/CO =0.7 235 39 0.67 500 130 IGCC applications
2000-6 Final Temperature Ramp of 235 -> 250 47 2.6 580 165 Catalyst life
Methanol Synthesis Catalyst
2000-7 Reactor Inspection Data during this period covered within other test runs. Physical inspection of key system
components
2000-8 In-situ Catalyst Activation 1, 216 -> 250 40 3.0 500 -> 650 150 -> 200 Tests of recent commercial interest
Temperature Programming
2000-8 In-situ Catalyst Activation 2, 215 40 3.6 500 -> 650 170 -> 180 Tests of recent commercial interest
Temperature Programming
2000-9 Heat/Mass Balance Check: 220 42 0.5 575 160 IGCC applications
Reactor Inlet H2/CO = 0.5
4-3
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Startup Procedure:

The following procedure describes the startup of the LPMEOHO reactor system. It is assumed
that the reactor system has been properly purged with N, through the syngas loop and 29C-01
LPMEOH™ reactor. If this procedure is being implemented for the first time, or if the reactor
was open to atmosphere for a significant period of time during a shutdown, a hot function test
with syngas and mineral oil (in the absence of catalyst) to at least 200°C should be performed
followed prior to the startup to minimize the production of metal carbonyls during normal
operation. If this is a re-start procedure, it will not be necessary to perform this part of the
procedure. The distillation system should be started on total recycle (see below).

The 29K-01 recycle compressor is started on total recycle (complete internal recycle operation).
N is introduced into the bottom of the reactor. The reduced catalyst slurry is then pressure
transferred from the 29D-02 slurry tank to the LPMEOH[ reactor. If an in-situ activation was
used to reduce the catalyst, or if the reactor was shutdown for only a brief period, the catalyst
slurry would already be in the reactor.

The flow from the syngas recycle compressor is then introduced to the reactor by closing the
recycle flow control valve. The increased gas flow from the recycle compressor will assist in
heat transfer in the reactor during the heat-up phase. Once positive gas flow through the reactor
has been observed on the flowmeter at the inlet to the reactor, the N, flow introduced at the
bottom of reactor can be stopped.

Boiler feedwater flow to the 29C-02 steam drum (including the reactor tubes) is introduced to
heat the catalyst slurry at a maximum rate of 30°C/hour. Startup steam, at 600 psig, is injected
into the heat exchanger risers, as needed, to maintain this heat-up rate until the reaction initiation
temperature (a maximum of 220°C) is reached.

Fresh feed gas is slowly started to the unit. The main valves upstream and downstream of the
29C-40 carbonyl guard bed are closed initially. A small manual valve is opened to slowly
pressurize the carbonyl guard bed to avoid fluidization and damage of the adsorbent. Once the
carbonyl guard bed has reached the syngas header pressure (nominally 750 psig), the main inlet
and outlet valves to the carbonyl guard bed can be opened. The LPMEOHU reactor, the
carbonyl guard bed, and the syngas loop are then pressurized to syngas header pressure.
Methanol product flow can then be taken to the distillation system (see below).

Major LPMEOHUO Reactor Control Loops:

The reactor pressure is controlled using the 29PC-150 control loop which achieves a desired
reactor pressure set-point by controlling the rate of flow of unreacted syngas through the purge
gas valve, 29FV-157A. LPMEOHLU reactor bulk temperature is tightly controlled to the desired
setpoint by using the 29TC-109 temperature control loop to adjust the steam drum pressure using
control valve 29PV-109. The 29E-02 syngas feed / product economizer effluent temperature is
controlled using the 29TC-101 control loop which achieves the desired economizer effluent
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temperature set-point by controlling the rate of reactor feed flow through the 29TV-101 syngas
feed / product economizer bypass valve.

Distillation System Startup Procedure:

The 29C-12 stabilizer feed drum, the 29C-10 stabilizer column, and the 29C-20 rectifier column
are first purged with N,. The N, pressure is maintained until the syngas is started to the unit.
Cooling water flow is then introduced to the 29E-11 stabilizer condenser and the 29E-22
stabilizer subcooler, and the fans on the 29E-21 rectifier air cooler are started. The stabilizer
feed drum, stabilizer column, and rectifier column are filled with methanol from the methanol lot
tanks (29D-20 or 29D-21). The stabilizer and rectifier columns are then heated using steam in
their respective reboilers (29E-10 and 29E-20).

A recycle flow loop from the stabilizer feed drum through to the stabilizer and rectifier columns
is then established. The methanol product takeoftf from the 29C-21 methanol rectifier reflux
drum and the underflow from the rectifier column are returned to the stabilizer feed drum until
syngas flow is started to reactor. The rectifier column is set on total reflux during this time.
Once methanol is available from the process at the 29C-03 high-pressure methanol separator, the
distillation system is taken off of total recycle operation and the crude-grade methanol is sent to
distillation capacity within the Eastman chemicals-from-coal complex for further processing.
Raw methanol is then introduced from the high-pressure methanol separator into the stabilizer
feed drum.

Batch-wise Slurry Withdrawal and Catalyst Activation Procedure:

The 29C-30 catalyst reduction vessel is designed to replace a portion (in 2,000 pound
increments) of spent methanol catalyst slurry in the reactor with an equal amount of freshly
activated catalyst. Spent catalyst slurry is pressure-transferred from the reactor to the catalyst
reduction vessel through the control valve (29PV-424) at the discharge of the 29G-30 slurry
transfer pump. The slurry is then cooled to less than 45°C using the 29E-33 utility oil cooler, at
which temperature it can be safely drained into drums.

Mineral oil is charged to the vessel from the 29D-30 fresh oil tank. This mineral oil is pre-
heated and catalyst is added. The slurry is agitated using the 29Y-30 agitator, and a reducing gas
(consisting of a dilute mixture of CO Gas in N3) is introduced at the bottom of the catalyst
reduction vessel. The agitator is stopped once gas flow has been established. The catalyst is
then activated using a series of temperature steps which are programmed into the distributed
control system logic. The heat of reduction is released to the slurry and is removed via an
external heat exchanger jacket on the catalyst reduction vessel. Bulk temperature control is
accomplished by varying the temperature of utility oil, which flows through the heat exchanger
jacket and which is controlled at the outlet of the 29E-32 utility oil heater. The operating
pressure for the catalyst activation procedure is controlled at the vapor outlet of the 29C-31
catalyst reduction vessel separator. Once the catalyst reduction procedure has been completed,
the reduced catalyst is pumped to the reactor using the slurry transfer pump.

Kingsport LPMEOH™ CCT Project Final Report: Volume 2 (June 2003)



In-situ Activation Procedure:

In-situ activation is the reduction of an entire charge (nominally 40,000 to 50,000 pounds) of
fresh catalyst within the reactor vessel. Following the removal and drumming of the spent
catalyst from the reactor, batches of fresh catalyst and mineral oil are mixed in the catalyst
reduction vessel and pressure transferred (without reducing or activating the batches) into the
reactor. During the loading procedure, N, is introduced into the bottom of the reactor to assist in
mixing and heat transfer. Once a full charge of fresh catalyst is added to the reactor, the recycle
compressor is started to further mix the catalyst slurry. The catalyst slurry is then activated
using a series of temperature program steps. A dilute mixture of Balanced Gas in N is used as
the reducing gas and enters the reactor at the bottom of the vessel. Once positive gas flow from
the recycle compressor through the reactor has been observed on the flowmeter at the inlet to the
reactor, the N, flow introduced at the bottom of reactor can be stopped. The heat of reaction is
released to the slurry and is removed via the internal heat exchanger. Bulk temperature control
is accomplished by initially manually varying the stream drum pressure. Once the steam drum
pressure exceeds the steam header pressure sufficiently, the temperature ramp can be
automatically controlled through the distributed control system. The operating pressure for the
in-situ activation is controlled using the 29PC-150 control loop which achieves a desired reactor
pressure set-point by controlling the rate of flow of unreacted syngas through the purge gas
valve, 29FV-157A. Once the in-situ catalyst reduction procedure has been completed, the
reactor is started up normally using the procedure described above.

Stand-by Conditions Procedure:

Following a shutdown of the LPMEOH™ demonstration unit, a standby condition is used to
maintain conditions for subsequent re-start. The reactor temperature is held at 180°C during this
stand-by condition, using 600 psig startup steam, as required. The recycle compressor is
generally kept in operation during stand-by to assist in heat transfer and to allow for gas flow to
continue through the reactor system. Generally, a reactor pressure of 95 psig is maintained with
the recycle compressor in operation. N, makeup can be introduced to the system once the N,
header pressure exceeds the compressor suction pressure of approximately 75 psig. The
distillation system is placed in recycle operation. If the recycle compressor is not available, N,
is introduced into the bottom of the reactor.

Shutdown Procedure:

To shutdown the LPMEOH™ demonstration unit, the fresh feed gas valves controlling the flow
of Balanced Gas and CO Gas are closed. If this is expected to be a short-term shutdown, the
stand-by conditions are established (see above).

If this is a longer-term shutdown, for instance a maintenance inspection, the catalyst slurry in the
LPMEOH™ reactor is pressure transferred to the slurry tank. The reactor can be depressurized
very quickly to 95 psig. Once this pressure is reached, the recycle compressor can be put into
internal recycle operation and subsequently shutdown, if required. N, can then be introduced
into the bottom of the reactor to maintain mixing of the slurry while it is cooling. The slurry is
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cooled in the reactor at a rate of 30-35°C per hour to a final temperature of 150°C. The slurry is
then transferred either to the slurry tank for storage or to the catalyst activation vessel for further
cooling using the utility oil cooler and subsequent draining into drums.

If the catalyst is to be reused after the shutdown, the catalyst will be pressure transferred from
the slurry tank back to the reactor at the conclusion of the maintenance outage. The 29Y-02
agitator is used to maintain the slurry in suspension, and a steam jacket is used to minimize heat
losses from the slurry tank. If the catalyst is to be replaced with freshly reduced catalyst, batches
of spent catalyst are then pressure transferred with N, from the slurry tank to the catalyst
reduction vessel for cooling to less than 45°C and drumming. Alternatively, these batches of
spent catalyst can be directly transferred from the reactor to the catalyst reduction vessel for
cooling and drumming, if desired.

4.2.1 Instrumentation and Data Acquisition

Within the LPMEOH™ Process, measurement of the flow and pressure of the catalyst slurry or
the three-phase reactor fluid was required in order to assess the performance of the technology at
the commercial demonstration of 260 sT/D. Transmitters with diaphragm seal(s) and oil flush
connections were used to provide accurate readings in this difficult environment. In addition,
nuclear density gauges were used on the LPMEOH™ reactor (to determine the expanded slurry
height) and the 29C-30 catalyst preparation vessel (to measure the three-phase density and
expanded slurry height). No other specialty instrumentation systems were required.

The LPMEOH™ demonstration unit utilized an existing computer network that controlled
operating plants at the Eastman chemicals-from-coal complex. A distributed control system was
used for automatic control, monitoring, and non-critical process and equipment shutdowns. A
data acquisition was tied into the data highway for the control system so that real-time plant data
could be accessed both at a office trailer (separate from the operating control room) at the
LPMEOH™ demonstration unit as well as at Air Products’ corporate headquarters in Allentown,
PA. A dedicated programmable logic controller was used so that critical process shutdowns
could be initiated independent of the control system hardware.

4.2.2 Test Methods

Appendix A, Table A-1 provides the streams, component lists and frequency of sampling for the
routine analytical measurements. Appendix A also contains a description of the sampling and
analytical methods used to quantify the concentration of arsenic (reported as arsine) and iron
carbonyl in the fresh feed gas to the LPMEOH™ demonstration unit. The simplified process
flow diagram, Figure 2.4-1, shows the measurement points.

4.3 ANALYSIS OF FEEDSTOCKS, PRODUCTS AND REAGENTS

In order to perform the routine material balance calculations, gas chromatographs were used to
analyze the syngas feed streams, the streams entering and exiting the LPMEOH™ reactor, and
the purge streams leaving both the main reactor loop and the distillation section. Analysis of the
two methanol streams (Crude-Grade Methanol and Refined-Grade Methanol) was also
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performed. Appendix B contains samples of material balance calculation sheets that include the
typical analysis of these streams for two operating scenarios: Appendices B-1 and B-2 provides
data when Balanced Gas is fed to the LPMEOH™ demonstration unit, and Appendices B-3 and
B-4 provide data during operation when CO-rich syngas is fed to the LPMEOH™ reactor.

In addition, syngas sampling was performed to determine the levels of trace components within
the various syngas streams that may be poisons to methanol synthesis catalysts. A summary of
these results is provided in Section 5.2.

Throughout the operating program, samples were taken of catalyst slurry from the LPMEOH™
reactor on a routine basis to analyze for the presence of known catalyst poisons and to track
some of the key physical properties of the methanol synthesis catalyst. Section 5.2 contains the
results of these analyses for the four different catalyst campaigns that were completed during the
performance period.

4.4 DATA ANALYSIS METHODOLOGY

Appendix C, Table 1 contains the major field instrumentation signals, analytical measurements,
and calculations which were used in determining the material and energy balance and
LPMEOH™ reactor performance. The simplified process flow diagram, Figure 2.4-1, also
shows the measurement points. Two sets of material balances were performed:

e Across the LPMEOHUO reactor, using the Reactor Feed Flowrate (Stream 109) and
Reactor Effluent Flowrate (Stream 120); and

* Around the LPMEOHLU demonstration unit, using the major plant feeds and product
streams as noted in Appendix C, Table 1.

Part of the process of data reduction is the elimination of those operating periods when one or
more key inputs to the material balance calculation is invalid (for example, a failure of a key
process flowmeter or an upset of the analytical system). If the material balance cannot be closed
due to such an instrument failure, a portion of a data period will be eliminated from the material
balance calculation. This analysis will be performed at the spreadsheet level, so that the
historian files will always contain the raw data from field instruments and analytical equipment.

A comprehensive set of the formulas used to calculate the parameters listed in Appendix C,
Table 1 is provided in Appendix C-2. These calculations were based upon actual measurements

from the LPMEOH[O demonstration unit.

4.5 DATA SUMMARY

The operating program for the LPMEOH™ demonstration unit can be broken into four operating
campaigns based upon the use of a fresh charge (full or partial) of methanol synthesis catalyst in
the LPMEOH™ reactor. Kingsport Catalyst Campaign 1 was conducted between April of 1997
and November of 1997. This campaign was concluded on 03 November 1997 after 171 days of
operation. Kingsport Catalyst Campaign 2 was conducted between December of 1997 and
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August of 2001. The campaign was concluded on 06 August 2001 after 1,325 days of operation.
Kingsport Catalyst Campaign 3 was conducted between August of 2001 and June of 2002. The
campaign was concluded on 04 June 2002 after 284 days of operation. The fourth Kingsport
Catalyst Campaign began on 28 June 2002 and included process and analytical data until the end
of the operating program on 31 December 2002 (a total of 187 days of operation).

Appendix D, Tables D-1 through D-4 provide the results from the operation of the LPMEOH™
demonstration unit during the 69-month operating phase. These data represent daily averages,
typically from a 24-hour material balance period, and those days with less than 12 hours of
stable operation are omitted. Since startup, about 103.9 million gallons of methanol was
produced. Eastman accepted all of the available methanol for use in the production of methyl
acetate, and ultimately cellulose acetate and acetic acid. The analysis of the key results is
provided in Section 5.

4.6 OPERABILITY AND RELIABILITY

Table 4.6-1 contains the availability of the LPMEOH™ demonstration unit during the 69-month
demonstration test program (availability is defined as the percentage of time that the
LPMEOH™ demonstration unit was available to operate, with the exclusion of scheduled
outages). The overall availability was 97.5%.

The causes of unplanned outages are also provided in Table 4.6-1. Startup was completed in two
days, and nameplate production of 80,000 gallons per day (260 sT/D) was achieved within four

days, and production rates exceeding 115% of design were achieved within six days.

Unexpected poisoning of the catalyst due to the presence of iron contamination in 1997 led to the

Table 4.6-1
LPMEOH™ Demonstration Unit Availability and Causes of Unplanned Outages

Operating Year® 1997 1998 1999 2000 2001 2002°
Availability (%) 94.9 99.54 99.4 96.3 97.7 94.1
Total Hours of 325.6 45.1 52.8 3114 166.3 198.9
Unplanned Qutages

Catalyst 149.3 0.0 0.0 0.0 38.7 0.0
Carbonyl Guard Bed 0.0 0.0 0.0 118.9 120.6 198.9
Electrical 20.7 24.6 0.0 42.3 0.0 0.0
Instrumentation 12.8 1.3 0.0 4.7 7.0 0.0
Mechanical 142.8 19.2 52.8 145.5 0.0 0.0

a. Operating year defined as April-March.
b. Through 31 December 2002.
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only unexpected outage related to catalyst performance. Given the very high level of catalyst
poisoning present, the team felt that the full replacement of the catalyst charge, and the outage
that would result, was necessary to achieve overall program goals. During operation of the
system, it was found that some of the oil return lines to the reactor were plugging and one heat
exchanger developed a leak at a flange connection. Redesign and replacement were undertaken
in 1997, creating a permanent solution.

In 1998, non-routine maintenance related to instrumentation tubing around the recycle
compressor caused a portion of the reported unplanned outages. Also, electrical transients
resulted in two additional short outages. The longest continuous operating run without
interruption of any kind was 94 days (July-October of 1998); an earlier campaign of 65 days of
continuous operation was completed in April of 1998.

In 1999, an unexpected leak developed in the boiler feed water piping system and two heat
exchangers, causing the need to make repairs.

In 2000, a leak in the tubing associated with a flow transmitter in the boiler feed water system
and an unrelated failure of a solenoid valve controlling boiler water feed to the steam drum
resulted in downtime. An electrical outage outside of the LPMEOH™ demonstration unit
caused the failure of rupture discs for the cooling water system.

As noted in Section 5.2, plant activities associated with the changeout of the adsorbent in the
29C-40 carbonyl guard bed began. The philosophy associated with the design of this equipment
was that the adsorbent would not need to be changed during the demonstration test period; as a
consequence, the ability to isolate the vessel from the remainder of the LPMEOH™
demonstration unit for maintenance was not included in the engineering design. In future
designs, the required isolation valves would be installed, so that the outages that were taken in
2000 through 2002 would be eliminated.

In 2001, a controls signal error caused the unit to drop off line for a very short period of time.
Also, operation could not be continued during a catalyst withdrawal/addition operation; the
LPMEOH™ reactor was restarted following the addition of a batch (2,000 pounds) of fresh
catalyst from the catalyst preparation vessel.

A monthly production record of 2,500,000 gallons of methanol was reached during October of
2002. For a 23-day period, production of nameplate capacity (80,000 gallons per day) or higher
was achieved. The October monthly average production was 101% of nameplate capacity.
Production rates as high as 117% of nameplate capacity were also achieved for shorter periods.

In addition to producing syngas for the LPMEOHU demonstration unit, the Eastman’s coal
gasification facility produces raw material for a gas-phase methanol production plant and a
carbon monoxide facility. The fluctuating needs of the impurities removal facility causes some
variance in the quantity of syngas produced. Given the ability of the LPMEOH[ demonstration
unit to tolerate changes in the composition and flow of syngas, this facility is used as the swing
facility to manage changes in syngas production. Through all of this fluctuation, the
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LPMEOHLU demonstration unit produced methanol to its full projected capacity based on the
composition and flow of syngas available.

4.7 SECTION 4 BIBLIOGRAPHY

a. “Commercial Demonstration of the Liquid Phase Methanol (LPMEOH™) Process — Demonstration
Test Plan”, Prepared by Air Products Liquid Phase Conversion Co., L.P., DOE Cooperative
Agreement No. DE-FC22-95PC93052, September 1996.
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5.0 TECHNICAL PERFORMANCE

5.1 CATALYST PERFORMANCE

As indicated in Section 4.5, there were four catalyst campaigns which characterize the operating
program of the LPMEOH™ demonstration unit. A comparison of the catalyst campaigns is
given in Table 5.1-1. The first campaign involved batch-wise catalyst activation along with the
addition of fresh slurry to maintain catalyst productivity. The second campaign involved batch-
wise catalyst activation along with withdrawal of spent catalyst slurry and addition of fresh
slurry to maintain catalyst productivity. The third and fourth campaigns used an in-situ
activation procedure to prepare a full charge of methanol synthesis catalyst. Temperature
programming was used in the third campaign to maintain productivity. During the fourth
catalyst campaign, productivity was essentially maintained by virtue of the very low catalyst
deactivation rates and, therefore, temperature programming was not used during the period of
performance. Methanol synthesis catalyst (baseline and alternative) from two different suppliers
was used during the operating program.

As shown in Figures 1.2.3-1 and 2.4-1, two catalyst guard beds were available to limit the levels
of trace contaminants entering the LPMEOH™ demonstration unit. The long-term performance
of the methanol synthesis catalyst was adversely impacted by the presence of species such as
arsenic (detected in the Balanced Gas stream) and iron (apparently generated during certain
operating periods within the LPMEOH™ demonstration unit). A review of the work on the
adsorbents used during the period of performance of the LPMEOH™ Demonstration Project is
provided in Section 5.2.

Table 5.1-1
Kingsport LPMEOH™ QOperating Program Campaigns

Starting
Kingsport Catalyst Catalyst Productivity Operating
Campaign | Run Start | Run End Days Type Charge | Activation Control Temperature
# Date Date Onstream Used (Ibs) Method Method (°C)
1 46097 | 117397 171 Baseline | 20300 | Batch Catalyst 250 to 260
Addition
Only
Baseline + Catalyst
2 12/20/97 8/6/01 1,325 . 19,500 Batch Withdrawal / 235°
Alternative o
Addition
3 8/24/01 6/4/02 284 Alternative | 41,580 | Insitu | LCTPSRANIC | o6i0040
Programming
4 6/28/02 Ongoing® | Ongoing® | Alternative 40,040 In-situ - 215

a. Primarily 235°C with brief operation at other temperatures.
b. The LPMEOH™ demonstration unit operating program ended 12/31/02 with 187 days onstream in Catalyst
Campaign 4.
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5.1.1 Catalyst Performance: Catalyst Campaign 1

An in-house kinetic model was used to assess the performance of the methanol synthesis catalyst
and to eliminate the effects of varying feed composition or operating conditions. This model can
be used to study changes in catalyst performance over stable periods of operation (typically two
weeks or more); results over shorter durations must be considered in light of the influence of
operating conditions (for example, variations in the bulk syngas composition). The “age” of the
catalyst can be expressed in terms of a dimensionless variable eta (), which is defined as the
ratio of the rate constant at any time to the rate constant for freshly reduced catalyst (as
determined in the laboratory autoclave). Figure 5.1.1-1 shows performance results from the
LPMEOH™ reactor during Catalyst Campaign 1. Typical exponential decay appeared as a
straight line on a semi-log-plot, as shown. The curve fit to data from a 4-month test at the
LaPorte AFDU in 1988/89 (this run was performed on CO-rich syngas derived from natural gas
at a reactor temperature of 250°C) and laboratory autoclave data from 1996 are included for
reference. During this catalyst campaign, the LPMEOH™ reactor operated at 250°C, except for
brief operation at 260°C at the very end of the campaign. Catalyst additions are noted on the
figure.

A partial charge (20,300 pounds out of a design of 40,000 pounds) of fresh catalyst was activated
in 9 batches within the 29C-30 catalyst preparation vessel and added to the LPMEOH™ reactor

Figure 5.1.1-1
Kingsport LPMEOH™ Catalyst Life (Catalyst Campaign 1)
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in early April of 1997. The initial performance of the catalyst was equivalent to the results from
the laboratory autoclave, indicating that the catalyst activation was successful. The highest
methanol production rate over a 24-hour period occurred on 19 April 1997 (89,900 gallons per
day, or 292.2 sT/D); for shorter balance periods (approximately 12 hours), methanol production
rates of 92,900 to 94,500 gallons per day (302 to 307 sT/D) were measured.

Over the next several weeks, the catalyst life data indicated that an accelerated negative change
in performance occurred. During the April/May of 1997 operating period, it was not
immediately apparent whether this decline in n was a result of a decline in catalyst activity or
hydrodynamic effects related to an increase in pressure drop across the gas sparger at the inlet to
the LPMEOH™ reactor. However, upon restarting the LPMEOH™ demonstration unit
following a planned outage in June of 1997, the value of N was determined to be unaffected by
the performance of the sparger. Therefore, it was concluded that the catalyst activity was
declining more rapidly than expected. The catalyst deactivation rate for the first 30 days of
operation was 3.4% per day; the higher catalyst deactivation during this period was later linked
to high concentrations of iron on the reactor catalyst samples. These higher iron concentrations
were most likely due to construction debris (refer to Section 5.2 for additional information).

Following the initial operating period, the catalyst performance continued to decline more
rapidly than expected; however, as noted on Figure 5.1.1-1, the rate of change was slower than
during the April/May operation. During the remaining period of operation during Catalyst
Campaign 1 from June through November of 1997, deactivation rates were higher than expected
based on experience from the LaPorte AFDU (catalyst deactivation rate of 0.4% per day). In
fact, the catalyst life was similar to the baseline deactivation results obtained during laboratory
autoclave testing (catalyst deactivation rate of 1.0% per day). Eliminating the catalyst
performance results for the first month due to catalyst hyperactivity and the presence of iron
construction debris, the average deactivation rate for the entire campaign was 1.3% per day.

Fresh catalyst was activated and added to the LPMEOH™ reactor on six occasions during this
first catalyst campaign to maintain catalyst productivity and increase catalyst loading. On 04
July 1997, the first catalyst batch of 2,300 pounds of fresh catalyst activated and added to the
LPMEOH™ reactor. This same quantity of catalyst was activated and added to the reactor on 11
July, 23 July, 12 September, 17 September, and 03 October 1997.

Based upon the results of unit operation and catalyst performance, DOE accepted a
recommendation by Air Products and Eastman in October of 1997 to drain the initial charge of
catalyst from the reactor and replace the charge with fresh catalyst. Prior to this catalyst
turnaround, the operating temperature of the LPMEOH™ reactor was raised from 250°C to
260°C for about one week of operation.
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5.1.2 Catalyst Performance: Catalyst Campaign 2

Catalyst Campaign 2 was the longest of the operating program at 1,325 days. During most of
this catalyst campaign, the operating temperature in the LPMEOH™ reactor was lowered to
235°C. By using the lowest possible temperature necessary to achieve the required methanol
production rate, the life of the methanol synthesis catalyst was potentially extended. Catalyst life
data during the first portion of Catalyst Campaign 2 (covering operations in 1997 and 1998) is
shown in Figure 5.1.2-1. At the start of this campaign in December of 1997, only a partial
charge (19,500 pounds) of fresh catalyst was activated in the catalyst preparation vessel and
added to the reactor system; this limited the amount of material exposed to poisons at the outset.
During this first portion of the campaign, fresh catalyst was activated and added to the
LPMEOH™ reactor on a periodic basis (as noted on the figure) to achieve the desired reactor
performance and to determine if hydrodynamic limitations could be reached at high slurry
concentrations (the design value was 40 weight % [wt%]). The rate of catalyst deactivation for
periods of stable operations (typically 2 weeks or longer) are indicated on the figure.

At a reactor temperature of 235°C, the decrease in | with time from the starting date of 20
December 1997 through Day 38 was calculated to be 1.0% per day, which represented a
significant improvement over the 3.4% per day decline measured during the initial six weeks of
operation of Catalyst Campaign 1. The deactivation rate also improved from the longer-term
rate of 1.6% per day calculated throughout the summer and autumn of 1997.

Figure 5.1.2-1
Kingsport LPMEOH™ Catalyst Life (Catalyst Campaign 2: 1997-1998)
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Based on this improvement, DOE accepted a recommendation by Air Products and Eastman to
further decrease the reactor temperature to 225°C. The initial operation at this temperature (from
Day 42 through Day 60) showed a modest improvement in the deactivation rate to 0.7% per day.
During two additional stable operating periods between Day 61 and Day 101, deactivation rates
0f 0.27% and 0.36% per day were calculated. These results compare favorably with the
performance from the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89.

The reactor temperature was then lowered further to 220°C between Day 104 and Day 135.
During a one-month test at a reactor temperature of 220°C and a Balanced Gas flowrate of 550-
600 KSCFH, the rate of decline of N was 0.4% per day, which matched the performance at
225°C. Beginning on Day 139, the temperature of the LPMEOH™ reactor was increased to
235°C, which was the operating temperature after the December 1997 restart. After the catalyst
addition on Day 182, the weight of catalyst in the LPMEOH™ reactor had reached 80% of the
design value of 40,000 pounds.

The LPMEOH™ demonstration unit completed a 24-day stable period of operation on Day 206
at a reactor temperature of 235°C and a flowrate of Balanced Gas of approximately 700 KSCFH.
Over this period, the rate of decline of N was 0.2% per day. This performance was superior to
the original target from the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89
(0.4% per day).

On Day 244, a test at a reactor temperature of 250°C was initiated. The test at the higher reactor
temperature was completed on Day 254 when accelerated changes in the calculated value for n
were observed. From Day 261 to Day 267, three batches of fresh catalyst were activated and
added to the LPMEOH™ reactor, which brought the catalyst loading to slightly above the design
value of 40,000 pounds.

Six additional batches of fresh catalyst were activated and added to the LPMEOH™ reactor
between Day 285 and Day 376. At this point, the catalyst loading in the LPMEOH™ reactor had
been increased to about 140% of design. No hydrodynamic instability was detected as the
catalyst slurry concentration in the reactor ranged from 46 to 48 wt%.

For the first year of operation under Catalyst Campaign 2, the average rate of catalyst
deactivation was calculated to be 0.65% per day. This result was a significant improvement over
the catalyst performance during Catalyst Campaign 1 (1.3% per day).

Catalyst life data during the second portion of Catalyst Campaign 2 (covering operations in
1999) is shown in Figure 5.1.2-2. The use of catalyst withdrawal and addition (as noted on the
figure) was first practiced during this portion of the campaign in order to achieve the desired
performance of the LPMEOH™ reactor.
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Figure 5.1.2-2
Kingsport LPMEOH™ Catalyst Life (Catalyst Campaign 2: 1999)
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Between Day 377 and Day 466, the LPMEOH™ demonstration unit continued to perform well
with high slurry concentrations in the LPMEOH™ reactor. Slurry concentrations greater than
48 wt% were achieved during this period with no apparent hydrodynamic instability. Three
batches of fresh catalyst were activated and added during this time, bringing the catalyst loading
to 151% of design, which was the maximum value achieved during the entire operating program.

Starting on Day 424, three separate transfers of catalyst slurry from the reactor were conducted
in order to dilute the slurry concentration in anticipation of an upcoming outage in March of
1999.

These steps reduced the calculated slurry concentration in the reactor from in excess of 48 wt%
to approximately 40 wt%. Reactor conditions were held at 235°C except for a brief production
test, between Days 431 through Day 435, when reactor temperature was increased to 240°C.
The

LPMEOH™ demonstration unit was shutdown between Day 437 through Day 449 in order to
complete the planned outage. A second planned Eastman complex outage was taken between
Day 483 and Day 494.

The average catalyst deactivation rate for calendar year 1999 was calculated to be 0.58% per
day. This result was equivalent to the performance in 1998 and was slightly greater than the
baseline
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deactivation rate from the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89 (0.4%
per day).

The catalyst life performance during the final portion of Catalyst Campaign 2 is provided in
Figure 5.1.2-3. Catalyst withdrawals and additions are indicated as dotted vertical lines in the
figure. A schedule for catalyst withdrawal and addition was developed that allowed for the
desired methanol production rate to be maintained with minimum disruption to the operations
staff. The overall schedule for catalyst withdrawals and additions was generally undertaken
every two months, and the typical amount of catalyst that was exchanged was about 11,000
pounds.

A comparison of the performance of the methanol synthesis catalyst with different syngas
compositions was able to be made. Between Day 825 and Day 844, during which a feed gas
with a Hy/CO ratio of 1:1 was fed to the LPMEOH™ reactor, a catalyst deactivation rate of
1.24% per day was calculated. Shortly after that test, a catalyst deactivation rate of 0.89% per
day was calculated for the period from Day 875 to Day 903, during which Balanced Gas alone
was used as feed to the LPMEOH™ demonstration unit. An analysis of these results determined
that the two data sets were statistically similar, given the scatter in the calculated values for the
catalyst rate constant.

Figure 5.1.2-3
Kingsport LPMEOH™ Catalyst Life (Catalyst Campaign 2: 2000-2001)
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The catalyst performance was also used during this operating period to gauge the
effectiveness of the 29C-40 carbonyl guard bed. As described in Section 5.2, the carbonyl
guard bed was charged with manganese dioxide (targeting arsenic) and activated carbon
(targeting iron and nickel) during this time. When the carbonyl guard bed was in service
with aged adsorbents (approximately one year of service), a catalyst deactivation rate of
0.85% per day was calculated over a 12-day period (Days 917 through 928). When the
carbonyl guard bed was bypassed over a 33-day period from Day 969 to Day 1002, a
catalyst deactivation rate of 0.82% per day was calculated. These results were statistically
the same and indicated that the aged adsorbents in the carbonyl guard bed were no longer
effective in removing trace contaminants. Note that the carbonyl guard bed was bypassed
for the remainder of Catalyst Campaign 2. The results for catalyst deactivation rates shown
on Figure 5.1.2-3 varied from 0.4% to 0.7% per day over this operating period, which could
indicate that the levels of trace contaminants entering the LPMEOH™ demonstration unit
were likely varying in concentration during this time.

The average rate of catalyst deactivation during the final portion of Catalyst Campaign 2 was
calculated to be 0.64% per day. For the entire campaign, the catalyst deactivation rate was
determined to be 0.63% per day, which was greater than the value calculated from the 4-month
proof-of-concept run at the LaPorte AFDU in 1988/89 (0.4% per day change in catalyst activity).

5.1.3 Catalyst Performance: Catalyst Campaign 3

Catalyst Campaign 3 involved a demonstration of in-situ activation procedure. A full charge
(greater than 40,000 pounds) of fresh methanol synthesis catalyst was placed into the
LPMEOH™ reactor and activated at one time. This was in contrast to the batch-wise activation
of smaller catalyst quantities (approximately 2,000 pounds each) used earlier in the
demonstration.

As shown in Figure 5.1.3-1, the initial activity of the methanol synthesis catalyst for Catalyst
Campaign 3 (n [J0.7) was less than expected when compared with data from the laboratory (n =
1.0). Information on the analysis of these initial performance results is provided in Section 5.6.
Following the completion of the in-situ catalyst activation procedure, conditions were selected to
deal with the hyperactivity that typically occurs when fresh methanol synthesis catalyst is
initially exposed to syngas. During the first few weeks of operation, conditions were varying
between a reactor pressure of 550-600 psig, reactor temperature of 212-220°C, and flowrate of
Balanced

Gas of 500-525 KSCFH. Once the test had proceeded beyond the period of hyperactivity,
operating conditions were set at 218°C reactor temperature, 685 psig reactor pressure, and 600-
650 KSCFH of Balanced Gas.
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Figure 5.1.3-1
Kingsport LPMEQOH™ Catalyst Life (Catalyst Campaign 3)
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As noted in Table 5.1-1, temperature programming (as opposed to catalyst withdrawal and
addition) was used as a productivity control method during Catalyst Campaign 3. The reactor
temperature was gradually increased as necessary to control reactor purge flowrate and maintain
catalyst productivity as the operating campaign progressed. Temperature changes were managed
such that sufficient performance data could be achieved at each temperature (minimum of two
weeks of operation at each condition to determine catalyst life performance data). Over the
entire period of Catalyst Campaign 3, the reactor temperature ranged from 216°C to 242°C.

The rates of catalyst deactivation that were computed during this period are indicated in Figure
5.1.3-1. Note that, for two performance periods during the first 100 days onstream, the
calculated rate of catalyst deactivation was significantly lower than the average results during
Catalyst Campaign 2 (0.63% per day), and was equivalent to or better than the results from the
4-month proof-of-concept run at the LaPorte AFDU in 1988/89 (0.4% per day). Following the
two periods of improved catalyst performance, the catalyst deactivation rates for Catalyst
Campaign 3 approached historical values of 0.6 to 0.7% per day.

The first operating test using methanol synthesis catalyst activated in-situ (within the
LPMEOH™ reactor as opposed to the 29C-30 catalyst preparation vessel) and temperature
programming was completed on Day 213 when a catalyst withdrawal and addition campaign was
undertaken to increase catalyst activity. A series of three withdrawals was conducted on Day
213 to Day 214. Four batches of fresh catalyst were activated and added to the reactor between
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Day 215 and Day 220. At the conclusion of the catalyst withdrawal/addition catalyst campaign,
the LPMEOH™ demonstration unit was operated at a constant reactor temperature of 235°C and
a reactor pressure of 700 psig.

5.1.4 Catalyst Performance: Catalyst Campaign 4

Based on the lower than expected activity achieved during the first in-situ activation, a decision
was made to perform a second in-situ activation using a revised procedure. As detailed in
Section 5.6.3, this revised procedure was developed to eliminate the step that resulted in the
storage of the fresh slurry at elevated temperatures prior to activation.

The second in-situ activation was undertaken in late June of 2002. Performance results for the
methanol synthesis catalyst following the second in-situ activation are presented in Figure 5.1.4-
1. The initial catalyst activity was excellent, and matched the performance expected with
properly activated catalyst from the laboratory autoclave. The initial operating conditions
(reactor temperature of 214°C, reactor pressure of 450 psig, Balanced Gas flowrate of 500-600
KSCFH) were selected to deal with the hyperactivity that is typical of freshly activated methanol

Figure 5.1.4-1
Kingsport LPMEQOH™ Catalyst Life (Catalyst Campaign 4)
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synthesis catalysts. Including the initial period of hyperactivity (approximately 3 weeks) that is
typical of methanol synthesis catalysts, the catalyst deactivation rate over the first 52 days of
operation was 0.52% per day; if the hyperactivity period is excluded, the rate of change of n
over the first six months of this catalyst campaign was calculated to be in the range of 0.1 to
0.2% per day. These results were a significant improvement over the historical average of 0.6 to
0.7% per day and the results from the proof-of-concept run at the LaPorte AFDU in 1988/89
(0.4% per day), and may have been related to the performance of the adsorbent in the carbonyl
guard bed, the removal of carbon steel components from the reactor internals (refer to Section
5.2), and the use of temperature programming to control the production rate across the
LPMEOH™ reactor. Due to the low rate of catalyst deactivation, the reactor temperature was
not increased during the 6-month operating period for this campaign (the operating program of
the LPMEOH™ Demonstration Project ended on 31 December 2002). Reactor pressure was
raised from 450 psig to 500 psig on 11 November 2002 to improve the conversion efficiency of
the process.

The change in the rate of catalyst deactivation at Day 140 may have been caused by a
breakthrough in arsenic (reported as arsine) through the adsorbent in the carbonyl guard bed. A
thermal treatment of the adsorbent in the carbonyl guard bed (described in Section 5.2) may have
resulted in the improvement in performance beginning on Day 160, and provides evidence of the
impact of the presence of trace contaminants in coal-derived syngas on the life of methanol
synthesis catalyst.

For the entire campaign (including the period of hyperactivity), the average rate of catalyst
deactivation was calculated to be 0.17% per day, which was significantly lower than
performance results from the laboratory, the LaPorte AFDU, or the earlier portions of the
operating program for the LPMEOH™ Demonstration Project.

5.1.5 Summary

Catalyst performance was tracked throughout the 69-month operating program at the
LPMEOH™ demonstration unit. The design for the project used the performance during the 4-
month proof-of-concept run at the LaPorte AFDU (0.4% per day on CO-rich syngas derived
from natural gas at a reactor temperature of 250°C) as the basis. One of the key objectives of the
commercial demonstration was to determine the long-term performance of the methanol
synthesis catalyst on coal-derived syngas, and to quantify the rate of catalyst deactivation for use
in any future projects. An in-house kinetic model was used to calculate the ratio of the rate
constant at any time to the rate constant for freshly reduced catalyst (as determined in the
laboratory autoclave). The rate of change of this parameter () improved over the demonstration
program. Following an accelerated rate of catalyst deactivation that was linked to the presence
of post-construction debris in the system, the initial results at the design operating temperature of
250°C (averaging 1.3% per day) were significantly higher than the design basis.

The project team and DOE agreed that a second catalyst campaign be undertaken using a lower
reactor temperature. During this 3+ year operating test, a long-term program of catalyst
withdrawal and addition was demonstrated as an effective means to maintain catalyst
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productivity. Most of the data during Catalyst Campaign 2 was taken at a reactor temperature of
235°C, and the rate of catalyst deactivation improved to 0.6% per day.

During the execution of the operating program for the LPMEOH™ Demonstration Project,
modes of operation that were not anticipated during the development of the original
Demonstration Test Plan were identified. The ability to activate the methanol synthesis catalyst
within the LPMEOH™ reactor by using syngas that is diluted with N, (so-called in-situ
activation) can result in lower capital cost. Also, the life of the methanol synthesis catalyst can
be extended by operating the LPMEOH™ reactor at low temperatures at the outset and slowly
increasing temperature with time to maintain a constant production of methanol (so-called
temperature programming). The third catalyst campaign used this in-situ activation procedure to
activate a full charge (in excess of 40,000 pounds) of fresh catalyst slurry inside the reactor. The
catalyst did not reach proper initial activity compared to the results from the laboratory
autoclave. The selection of operating conditions not associated with the activation was
identified as the cause of the lower initial catalyst activity (refer to Section 5.6). Temperature
programming was first practiced during Catalyst Campaign 3 to minimize the operating
temperature and increase as necessary to maintain catalyst productivity. Levels of iron, arsenic,
and sulfur were increasing on the catalyst during this campaign. The average catalyst
deactivation rate for Catalyst Campaign 3 was similar to the result for Catalyst Campaign 2
(0.6% per day).

Catalyst Campaign 4 also involved an in-situ activation with an improved procedure to avoid
high temperature storage of fresh catalyst slurry prior to activation. The activation resulted in
the proper initial activity of the methanol synthesis catalyst. The average rate of catalyst
deactivation during the 6-month duration of this campaign was 0.17% per day, which was 'z of
the design basis for the LPMEOH™ demonstration unit. The reactor was operated at a constant
low temperature of 215°C during this campaign.

The improvement in the long-term performance of the methanol synthesis catalyst can likely be
attributed to several factors that were investigated as part of the operating program for the
LPMEOH™ Demonstration Project. The negative effects of certain trace contaminants in coal-
derived syngas may have had the most significant impact on catalyst life; Section 5.2 provides
details on the results of analyses of catalyst samples from the LPMEOH™ reactor, laboratory
work on trace contaminant removal, and the change of adsorbent materials within the existing
catalyst guard bed system at the LPMEOH™ demonstration unit. The ability to maintain the
desired rate of methanol production using the concept of temperature programming was likely
another factor, and the development of the in-situ activation procedure allowed for the minimum
operating temperature to be utilized; Section 5.6 provides additional details on the work in this
area.
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5.2 IDENTIFICATION AND REMOVAL OF TRACE CONTAMINANTS IN COAL-
DERIVED SYNGAS

One of the major technical risks associated with the design of the LPMEOH™ demonstration
unit was the magnitude of the impact of trace contaminants in coal-derived syngas on the long-
term performance of the methanol synthesis catalyst. Catalyst consumption is a major
component in the variable cost of operation of methanol production plants, and the results from
the 4-month proof-of-concept test at the LaPorte AFDU were obtained using CO-rich syngas
produced from natural gas. During the operation of the LPMEOH™ demonstration unit,
attempts were made to determine the impact of trace contaminants on the performance of the
methanol synthesis catalyst. The presence of certain elements was identified from samples of
spent catalyst, spent adsorbent materials from catalyst guard beds, and syngas entering the
LPMEOH™ demonstration unit. The effects of certain elements were identified in laboratory
studies,( f;md the adsorbents in the catalyst guard bed system were changed based upon these
results.”

A description of the Eastman upstream gas cleanup systems was provided in a topical report.(b)
These systems include a Rectisol gas clean-up plant located downstream of the Texaco coal
gasification system and a catalyst guard bed (equipment number 10C-30), which was installed by
Eastman upstream of the fixed-bed methanol plant. Figure 1.2.3-1 shows the location of this
equipment in relation to the syngas generation system and to both the fixed-bed methanol plant
and the LPMEOH™ demonstration unit. The Rectisol unit was primarily designed to remove
sulfur compounds from the syngas stream. The Eastman catalyst guard bed was installed to
remove trace contaminants (in particular, compounds of sulfur and arsenic) which adversely
impact the long-term performance of methanol synthesis catalysts.

The 29C-40 carbonyl guard bed (as shown in Figure 2.4-1) is a fixed adsorbent guard bed that
protects methanol synthesis catalyst in the LPMEOH™ reactor against possible upsets of
contaminants from the upstream gas cleanup units. The unit is four feet in diameter with an
active bed length of 12 feet. Normal process flow is downward; the design also included a
thermal regeneration system to reclaim performance of the adsorbent following saturation with
metal carbonyls.

During the design phase of the LPMEOH™ Demonstration Project, the basis for the rate of
catalyst deactivation (0.4% per day) was selected based upon the results from the 4-month test at
the LaPorte AFDU. The experiences at the pilot unit had identified iron and nickel carbonyl as
significant poisons to methanol synthesis catalyst. In addition, a field test was performed at the
Kingsport chemicals-from-coal complex in 1996 using autoclaves housed in a transportable
laboratory, the Alternative Fuels Field Development Unit (AFFTU); a photograph is provided in
Figure 5.2.1-1. As documented in a topical report, the performance of the methanol synthesis
catalyst in the autoclave was not impacted by the presence of trace quantities of iron, nickel,
sulfur, arsenic (expected to be in the form of arsine [AsH3]), and chloride that were detected on
spent catalyst, even with no catalyst guard adsorbent materials in service.

Based upon these results, the basis for the design of the equipment to protect the methanol
synthesis catalyst from trace contaminants in the coal-derived syngas was to utilize the existing
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10C-30 catalyst guard bed within the Eastman chemicals-from-coal complex, which was charged
with zinc oxide (targeting sulfur) and manganese dioxide on alumina (targeting arsenic), and to
install the 29C-40 carbonyl guard bed utilizing activated carbon for removal of iron and nickel

carbonyl. Both vessels were designed to operate at system pressure (nominally 750 psig) and
ambient temperature.

Figure 5.2-1
Photograph of Alternative Fuels Field Test Unit (AFFTU)

Clesn Foels From Coal
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5.2.1 Kingsport Catalyst Campaign 1

Although there were no spent catalyst withdrawals during the campaign, freshly reduced catalyst
was added to the LPMEOHL reactor to maintain productivity starting in July of 1997. Analyses
of early samples from Kingsport Catalyst Campaign 1 indicated a step-change increase in the
concentration of iron on the catalyst surface during the initial six weeks, which could not be
correlated to the presence of iron carbonyl in the feed gas streams. This finding was most likely
related to the detection of post-construction debris within various parts of the facility. During
this period, higher than expected levels of arsenic were also found on the catalyst samples.

Table 5.2.1-1 lists elemental composition of freshly reduced and spent catalyst samples from
Kingsport Catalyst Campaign 1. The presence of arsenic in sample K0597-2 indicated that the
manganese dioxide in the Eastman catalyst guard bed was no longer effective in removing
arsenic from the Balanced Gas feed. Given this result, Eastman replaced both adsorbents (zinc
oxide and manganese dioxide) with fresh material in October of 1997.

5.2.2 Kingsport Catalyst Campaign 2

Fresh methanol catalyst was activated and transferred to the LPMEOH™ reactor in December of
1997 in preparation for this operating campaign. Given that the adsorbents in the Eastman
catalyst guard bed had recently been replaced with fresh material, it was decided to replace the
activated carbon in the carbonyl guard bed with fresh adsorbent. At the same time, the AFFTU
was returned to the Eastman chemicals-from-coal complex to obtain real-time laboratory data in
parallel with the unit operation.” At the baseline operating conditions for laboratory testing
(including a reactor temperature of 250°C), the rate of catalyst deactivation in the autoclave in
the AFFTU was statistically similar to the results using contaminant-free syngas. During the
parallel test for the LPMEOHT™ reactor (at a reactor temperature of 235°C), the catalyst
deactivation in the LPMEOH™ demonstration unit was about 1% per day (as noted in Section
5.1-2), which was still higher than the results from the 4-month proof-of-concept test at the
LaPorte AFDU in 1988/89 (0.4% per day at a reactor temperature of 250°C). Analytical results

Table 5.2.1-1
Kingsport Catalyst Campaign 1 - Elemental Composition of Solids from Slurry Samples

Concentration,
parts per million (weight basis) (ppmw)
Time Onstream,
days As S Fe Ni Cl
Several 0 <25 100 47 25 -
K0597-2 31 446 190 281 61 <200
K0897-1 93 601 235 169 <20 -
K0997-1 110 779 575 261 37 -
K1097- 136 711 330 189 28 -
K9711-1b 173 699 340 194 37
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also detected the presence of arsenic in the Balanced Gas feed (> 31 parts per billion by volume
[ppbv]), carbonyl sulfide (COS) (10-20 ppbv), and an average total sulfur concentration of about
37 ppbv.

During the test period, there were numerous withdrawals of aged catalyst slurry and additions of
freshly activated catalyst to the reactor resulting in a mixture of aged and fresh catalyst as the run
proceeded. This complicated the interpretation of analytical data. Catalyst slurry samples for
analysis at Air Products were taken at least monthly and were routinely monitored for expected
trace contaminants including arsenic, sulfur, chlorine, iron, and nickel. As shown in Figure
5.2.2-1, arsenic, sulfur, and iron were detected on the catalyst in significant concentrations and,
of these, arsenic was by far the most abundant. Catalyst additions and withdrawals caused
periodic decreases in arsenic concentration but these values subsequently increase with time on
stream.

Given that arsenic was the largest species detected on the samples of spent catalyst, laboratory
studies were performed to determine its impact on catalyst life. The results showed that arsenic
(in the form of arsine) was a strong catalyst poison, and that its effects were not determined
during earlier autoclave testing in the AFFTU due to the high background rate of catalyst
deactivation that is inherent to the laboratory setting (around 0.05% per hour or 1.2% per day vs.
0.4% per day at the LaPorte AFDU) and the low concentration of arsenic in the Balanced Gas
feed (measured at 39 ppbv in a sample taken upstream of the Eastman catalyst guard bed in June
of 1999). Figure 5.2.2-2 shows the fit of autoclave data for the impact of arsine on the life of
methanol synthesis catalyst.

Figure 5.2.2-1
Kingsport Catalyst Campaign 2 - Trace Contaminant Concentrations on Slurry Samples
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Figure 5.2.2-2
Effect of Arsine Concentration on Methanol Catalyst Deactivation Rate in Autoclave
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Given the increasing concentration of arsenic on the samples of spent catalyst, the adsorbents in
both the Eastman catalyst guard bed and the carbonyl guard bed were changed. In June of 1999,
the Eastman catalyst guard bed was charged with only manganese dioxide for arsine removal,
and the carbonyl guard bed was split between manganese dioxide and activated carbon (as the
carbon may have affinity for other species beyond iron and nickel carbonyl). The spent activated
carbon was analyzed for presence of trace contaminants; the results are provided in Table 5.2.2-
1. The fresh adsorbent contained substantial concentrations of sulfur, N;, and iron and thus an
accurate accounting of these elements in the spent samples was difficult. In particular, the fresh
adsorbent sulfur concentration was too high to obtain meaningful sulfur loadings on the bed.
The results indicated a fairly uniform arsenic concentration throughout the bed implying that
activated carbon was largely ineffective for removal of arsenic-containing contaminants.

Table 5.2.2-1
Elemental Analysis Results for Spent Activated Carbon from 29C-40 Carbonyl Guard Bed

(June 1999)

Elemental Concentrations, ppmw, vs. Fresh Adsorbent®
Sample No. Description As S N Zn Mn Fe Ni Cr Cu
AGB-57 fresh adsorbent 6.0 5930 5,000 2.6 10.7 2,010 39.6 5.0 18.6
AGB-42 bed inlet 1,630 <360 2,400 225 141 nd nd nd nd
AGB-46 5' from bed inlet 1,570 <330 - 213 135 nd nd nd nd
AGB-50 12' from bed inlet 1,990 <430 3,400 122 79 nd nd nd nd

a. for spent adsorbent, elemental concentrations were corrected for concentrations on fresh adsorbent;
nd = none detected.

5-17
Kingsport LPMEOH™ CCT Project Final Report: Volume 2 (June 2003)



During the first two months of service, the pressure drop across the carbonyl guard bed began to
increase gradually. By the end of July of 1999, the pressure drop was measured at over 20 psi;
the expected pressure drop was less than 1 psi. During a vessel inspection on 12 August 1999,
changes to the bottom support screen and its support were made. During this maintenance,
samples of the two adsorbents were analyzed. The results for the manganese dioxide are
provided in Table 5.2.2-2. Arsenic was found throughout the manganese dioxide, but sulfur
above that on the fresh adsorbent was found only on the inlet sample. For the activated carbon
portion of the bed, arsenic concentrations were determined to be greater than that of the fresh
adsorbent throughout the bed with a gradient from inlet to outlet (Table 5.2.2-3). This implied
that arsine had broken through the bed.

Based upon these results, a laboratory screening program was initiated to identify alternate
adsorbent materials with affinity for arsine that could be utilized in the Eastman catalyst guard
bed and/or the carbonyl guard bed within the LPMEOH™ demonstration unit. Of the adsorbents
examined, an activated carbon impregnated with copper oxide (CuO/C) was viewed as the
material most likely to remove AsHj3 and other contaminants from the Balanced Gas feed. It was
reasoned that the CuO portion would remove AsHs, COS, and hydrogen sulfide (H,S) while the
carbon portion would function as it did previously to remove contaminants such as iron and
nickel carbonyl as well as trace organics. The carbonyl guard bed was determined to provide
adequate contact time and mixing length of the CuO/C adsorbent.

Table 5.2.2-2
Analysis of Fresh and Spent Manganese Dioxide from 29C-40 Carbonyl Guard Bed

(11 August 1999)
conc., wt% Concentration, ppmw
Sample description Al Mn | As A§° S s Mg Zn Mo Ga Ba
fresh adsorbent | 36.2 244 | <46 6.3 150 210 180 nd nd nd nd
AGB81199-1 Top 342 222 | 940 200 280 410 270 90 40 nd nd
AGB81199-3 2 ft down 346 21.7 | 800 130 80 260 <300 nd nd 30 nd
AGB81199-6 5 ft down 344 219 | 580 66 90 250 240 40 nd nd 120

a. Concentration determined by elemental analysis; nd = not detected.

Table 5.2.2-3
Analysis of Fresh and Spent Activated Carbon from 29C-40 Carbonyl Guard Bed

(11 August 1999)
Concentration, ppmw
Sample Description S S? As As® Na Mn Mo Ba Zr
fresh adsorbent 11,400 370° <16 2.1 400 12 nd nd nd
AGB 81199-9  8'down, top C 10,700  400° 1,000 1,000 700 40 10 130 40

AGB 81199-11 10' down, middle C 9,800  330° 240 260 800 30 10 130 30
AGB 81199-13 12' down, bottom C 8,300  320° 320 410 300 50 10 80 nd

a. Concentration determined by elemental analysis.
b. Large errors because of high background S; nd = not detected.
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Laboratory testing was performed to determine any safety implications of using this material at
ambient temperature. Exposure of CuO/C adsorbent to Balanced Gas at 750 psig and 30°C
resulted in temperature increases of 4.5°C or less, implying that no significant reduction (in this
case, the reaction of the copper oxide with a reductant such as CO or H; to copper metal and
either CO; or H,O) to metallic copper occurred at near ambient temperature. No methanol or
other organics were observed in the bed exit gases, implying that the adsorbent had no methanol
synthesis catalytic activity. Following reduction to a copper-impregnated carbon (Cu/C)
adsorbent using dilute H, in N,, temperature increases upon syngas exposure were almost the
same as for the unreduced material. Again, the bed outlet showed no sign of methanol or other
organics meaning that the Cu/C material had negligible catalytic activity at near ambient
temperatures. Additional testing at temperatures up to 250°C resulted in little to no formation of
methanol or other organics.

The new adsorbent material was loaded into the carbonyl guard bed, and the vessel was
operationally tested on 03 August 2000. Within 30 minutes of the introduction of Balanced Gas,
temperatures in the carbonyl guard bed began to rise beyond the expected values based upon the
results of the laboratory testing. The Eastman operations team moved quickly to depressurize
the carbonyl guard bed by venting the syngas to the Eastman purge gas header. No
environmental issues were experienced due to this incident. The carbonyl guard bed was then
isolated from the feed syngas streams so that the LPMEOH™ demonstration unit could continue
to operate.

The results of additional laboratory testing indicated that the probable cause of this temperature
excursion was the reduction of copper oxide to copper metal. A procedure was then developed
to reduce the copper oxide on the adsorbent to copper metal at 100°C using a dilute stream of
Balanced Gas in N, over a 2-day period. The existing charge of adsorbent was subjected to the
reduction procedure on 17-19 April 2001. Little uptake of H, or CO was measured, indicating
that the adsorbent material had been essentially reduced during the initial operations in August
of 2000. The carbonyl guard bed vessel was brought onstream on 26 April 2001. The carbonyl
guard bed internal temperatures increased by about 30-40°C and then stabilized following the
introduction of syngas. This was consistent with the temperature rise that would be expected due
to the adsorption of CO on the guard bed material. However, sampling of the syngas entering
and leaving the carbonyl guard bed indicated that breakthrough of arsine through the adsorbent
had occurred within the first 6 days of operation versus an expected life of 1 to 2 months.
Samples of spent material from the carbonyl guard bed indicated that the exposure to elevated
temperatures during the upset in August of 2000 may have damaged the adsorbent.

Air Products and Eastman decided to replace the used adsorbent with fresh material. On 24 July
2001, the carbonyl guard bed was emptied and refilled with the same commercially available
adsorbent. During this reduction procedure, a dilute stream of Balanced Gas in N, was
preheated and used to reduce the copper oxide to copper metal in a temperature controlled
manner. The temperature control during the procedure was excellent, and the uptake of CO and
H, approached the theoretical value based upon the concentration of copper oxide on the
adsorbent. The reduction was completed on 28 July 2001. After cooling with N, a pressure
check to full supply pressure with Balanced Gas was conducted. The adsorbent temperatures
increased by about 25°C and stabilized during this examination. The carbonyl guard bed was
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bypassed after the pressure check, and was brought onstream at the start of the third catalyst
campaign.

5.2.3 Kingsport Catalyst Campaign 3

Unlike previous campaigns, the third Kingsport campaign involved an in-situ activation of a full
charge (greater than 40,000 pounds) of catalyst. Methanol synthesis catalyst in the oxide form
and mineral oil were loaded into the LPMEOH™ reactor without prior activation. The entire
contents of the reactor were then reduced, or activated, using dilute Balanced Gas in N,. In
previous campaigns at the LPMEOH™ demonstration unit, catalyst had been reduced with dilute
CO in N; in smaller batches (approximately 2,000 pounds per batch) in the catalyst preparation
system and transferred into the LPMEOH™ reactor. The initial performance of the catalyst was
less than expected when compared with data from the laboratory. Additional information on this
procedure is provided in Section 5.3.

Over the entire campaign, only two contaminants (iron and arsenic) were found on the catalyst.
As shown in Figure 5.2.3-1, iron concentrations increased at a substantial rate while the increase
in arsenic was much more modest. The final sample contained 534 ppmw iron. Arsenic
concentrations reached a maximum of only 318 ppmw and 203 ppmw for the final sample
analyzed (213 days). Sulfur was below its limit of detection (160 ppmw or lower) throughout
the campaign. Although a direct comparison of data from Campaigns 2 and 3 is complicated by

Figure 5.2.3-1
Kingsport Catalyst Campaign 3 - Trace Contaminant Concentrations on Slurry Samples
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differences in total syngas exposure, some conclusions can be drawn. The arsenic loading on the
Campaign 2 catalyst contained 277 ppmw sulfur while no sulfur was detected on the Campaign 3
catalyst. However, iron on the Campaign 2 catalyst was only 89 ppmw.

The use of the Cu/C adsorbent in the carbonyl guard bed was instrumental in lowering the
quantity of arsine entering the LPMEOH™ demonstration unit. In order to confirm the
observations during the laboratory evaluations, the effectiveness of the adsorbent was followed
by monitoring AsHj concentrations in the carbonyl guard bed outlet. Samples were collected by
passing syngas through an activated carbon trap followed by subsequent analysis for arsenic.
During the first 27 days of service, the outlet AsH3 concentration was less than 4 ppbv while the
inlet arsine concentration was 52 ppbv (6 days) and 63 ppbv (28 days). Thus, the bed was
effective for AsH; removal. The outlet concentration was next determined on the 68 day and
found to be 5.6 ppbv, indicating that some breakthrough had occurred. The outlet concentration
appeared to increase with time on stream and reached 30 ppbv by Day 102, indicating substantial
breakthrough.

During the laboratory assessment of the Cu/C adsorbent, it was determined that the bond
between copper and arsine was irreversible, and it was theorized that the rate limiting step in the
reaction of Cu/C with AsH; was the diffusion of bound arsenic away from the Cu surface and
into the bulk. It was reasoned that a “purge” of 120°C N, would warm the bed sufficiently to
increase the rate of surface arsenic diffusion into the bulk and thus provide fresh copper surface
for AsHj adsorption. During Catalyst Campaign 3, a thermal treatment was conducted in order
to extend the useful life of the Cu/C adsorbent. The results of syngas sampling at the outlet of
the carbonyl guard bed showed that the AsH; outlet concentration was below its limit of
detection following both treatments. Thus, this thermal treatment extended the useful life of the
adsorbent. Arsine was detected in the outlet of the carbonyl guard bed after 42 days on stream,
which indicated that the performance of the adsorbent was beginning to degrade. A second
thermal treatment was conducted, and once again arsine was not detected in the outlet from the
carbonyl guard bed.

Based upon the decrease in the effective onstream time of the current charge of adsorbent, it was
decided to replace the adsorbent in the carbonyl guard bed with fresh material. The spent Cu/C
adsorbent was removed from the carbonyl guard bed and sampled; results of the analysis are
provided in Table 5.2.3-1. The arsenic concentration varied in a regular fashion down the bed
with 9,260 ppmw and 2,280 ppmw at the inlet and outlet, respectively. Sulfur concentrations
were corrected for that of the fresh adsorbent and, because of high background sulfur
concentration, the level of sulfur could be calculated only for the inlet sample. Similarly, high
background iron precluded quantification of iron adsorption. No other contaminants were found
on the spent adsorbent samples.

The fresh charge of CuO/C adsorbent was reduced and brought onstream on 08 March 2002.
Initial performance following the replacement of the adsorbent was acceptable, as the average
concentration of arsine was reduced from an inlet value of approximately 55 ppbv to 3 ppbv.

The performance of the adsorbent began to degrade by late April of 2002, as the concentration of
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Table 5.2.3-1
Analysis of Fresh and Spent Cu/C Adsorbent from 29C-40 Carbonyl Guard Bed

(20 February 2002)
Concentration, ppmw
Sample no. Description As S? Fe Ni P Cr Mo
18141-88-1 inlet 9,260 5,900  <1,400 <27 <150 <8 <140

18141-88-3 3" from inlet 8,720 nd <1,400 <27 <150 <8 <140
18141-88-6 6" from inlet 5,100 nd <1,400 <27 <150 <8 <140
18141-88-9 9™ from inlet 4,250 nd <1,400 <27 <150 <8 <140
18141-88-12 12" from inlet 3,240 nd <1,400 <27 <150 <8 <140
18141-88-16  16™ from inlet 3,150 nd <1,400 <27 <150 <8 <140
18141-88-19  outlet 2,280 nd <1,400 <27 <150 <8 <140
a. Concentration corrected for background on the fresh adsorbent; nd = none detected.

arsine at the outlet of the carbonyl guard bed had increased to 10 ppbv. This charge of adsorbent
was used until the end of Catalyst Campaign 3 on 05 June 2002.

During this campaign, one result of note was the substantial increase in iron on the catalyst with
time. The most likely and possibly the only source of iron contamination is iron carbonyl. The
volatile carbonyl present in the syngas feed can enter the LPMEOH™ reactor if breakthrough of
the adsorbent in the carbonyl guard bed occurred. A laboratory evaluation had earlier showed
that the Cu/C adsorbent had a very high removal capacity for iron carbonyl. Furthermore, results
from gas sampling performed on 23 April 2002 found < 8 ppbv iron carbonyl in the carbonyl
guard bed inlet and outlet. Another possibility was that iron carbonyl was generated within the
stainless steel metallurgy in the LPMEOH™ reactor or the associated recycle loop hardware.
Based on laboratory experiments, this also seemed unlikely. Although the concentration of iron
detected in slurry samples was likely sufficient to adversely impact the long-term catalyst
activity during this campaign, its presence was not related to poor adsorbent performance in the
carbonyl guard bed or to some problem with the in-situ activation procedure.

It was subsequently determined that the most likely source of the iron was the incorrect
installation of carbon steel parts inside the reactor during a maintenance outage in April of 2001.
The correct stainless steel parts were installed after the conclusion of Kingsport Catalyst
Campaign 3 in June of 2002. A hot function test with a CO-rich syngas and mineral oil (in the
absence of catalyst) showed low levels of iron carbonyl (approximately 30 ppbv) in the reactor
feed gas stream after three days of testing.
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5.2.4 Kingsport Catalyst Campaign 4

The in-situ activation procedure was successfully demonstrated during the final Catalyst
Campaign at the LPMEOH™ demonstration unit; details are provided in Section 5.3. The
results of analysis of spent catalyst samples from this campaign are listed in Table 5.2.4-1. No
significant quantities of any of the contaminants analyzed were found during the first three
months of this catalyst campaign.

A fresh charge of CuO/C adsorbent was charged to the carbonyl guard bed, reduced, and brought
onstream at the start of Catalyst Campaign 4. During the first week in service, gas sampling was
performed to assess the initial performance of the adsorbent. The outlet concentration of arsine
was determined to be less than the detection limit of the analysis (2 ppbv). These results provide
evidence that the adsorbent in the carbonyl guard bed was performing well during the first week
of operation.

Based upon results from Catalyst Campaign 3, an operating schedule for the adsorbent was
developed. Fresh adsorbent can be used for about two months before breakthrough of arsine can
be expected. A thermal treatment can then be performed on the adsorbent to provide increased
capacity for arsine removal, and the material can be used for another month before the adsorbent
needs to be replaced. Based upon this timetable, a thermal treatment was completed in late
August of 2002. The spent adsorbent was removed after about 3 months of use, and fresh
material was reduced and brought onstream in mid-October of 2002. (At the same time,
Eastman replaced the manganese dioxide in the 10C-30 catalyst guard bed with fresh adsorbent.)
The timing for the thermal treatment for this charge was accelerated by one week (to 06
December 2002) due to an observed increase in the rate of catalyst deactivation (as described in
Section 5.1.4).

Table 5.2.4-1
Kingsport Catalyst Campaign 4 - Elemental Composition of Solids from Slurry Samples

Concentration, ppmw

Time Onstream
days As S Fe Ni Cl
K0206-1 0 <20 <40 <23 <10 <100
K0109-1 12 <2 <19 28 <7 na
K0109-3 26 4.2 <25 44 <7 na
KO0110-1 40 5.4 <39 40 <6 na
K0110-2 54 19 <47 58 <7 na

a. K0206-1 is catalyst in oxide form; others are solids from reactor slurry samples;
na = not available.
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5.2.5 Summary

Significant progress was made during the operating phase of the LPMEOH™ Demonstration
Project regarding the quantification of the impact of trace contaminants in coal-derived syngas
on the performance of methanol synthesis catalyst and the study and use of adsorbents to remove
targeted catalyst poisons. The 29C-40 carbonyl guard bed was originally designed for ambient
temperature operation and to target the removal of carbonyl contaminants that could be present
in coal-derived syngas. With the exception of two instances of the accidental introduction of
iron to the system in Catalyst Campaign 1 (construction debris) and Catalyst Campaign 3
(incorrectly installed carbon steel parts in the LPMEOH™ reactor), iron and nickel carbonyls did
not adversely impact the performance of the methanol synthesis catalyst at the LPMEOH™
demonstration unit.

Arsenic, and to a lesser degree sulfur, were the main contaminants that were detected on the
samples of catalyst slurry taken from the LPMEOH™ reactor. Two adsorbents to target arsenic
and sulfur were evaluated at the LPMEOH™ demonstration unit during Catalyst Campaigns 2
through 4. During Catalyst Campaign 2, the carbonyl guard bed was charged with 50% by
volume manganese dioxide and 50% activated carbon. The manganese dioxide adsorbent
displayed affinity for arsenic removal but the adsorbent bed broke through (based on gas-phase
arsine analysis) after approximately one month of service. During Catalyst Campaigns 3 and 4, a
copper oxide-impregnated activated carbon adsorbent was reduced and placed into service. This
adsorbent was effective in arsine removal as determined by gas-phase analysis and catalyst
sample results. The Cu/C adsorbent had a service life of about two months at the LPMEOHU
demonstration unit. An innovative thermal treatment was employed to extend the service life of
the adsorbent for two additional months.

The improved performance of the catalyst guard system may have had a direct impact on the
results for catalyst life during Catalyst Campaign 4 (catalyst deactivation rate of 0.1 to 0.2% per
day versus an average of 0.6 to 0.7% per day during the previous 3 years of operation). By
controlling the exposure of methanol synthesis catalyst to poisons, the targeted economics for
coproduction of methanol in an IGCC power plant (as detailed in Section 9) can be achieved.
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5.3 GAS SPARGER PERFORMANCE

The sparger is a proprietary gas distribution device used to introduce the feed gas into the bottom
of the LPMEOH™ reactor. The sparger was developed on a proprietary basis by Air Products
and is intended to introduce the feed gas to the slurry bubble column reactor. It must also be
able to withstand interruptions to gas flow without negative impact on operations. The
principles for the design of the sparger at the LPMEOH™ demonstration unit were first utilized
during the 4-month proof-of-concept test of the LPMEOH™ Process at the LaPorte AFDU,
during which no sparger-related outages were encountered.

Pressure drop can be expressed by the following equation:

AP =K [ (V * MW)*
p

where:
AP = pressure drop across sparger (psi)
= sparger resistance coefficient (dimensionless)
vapor volumetric flowrate (KSCFH)
MW = vapor molecular weight (Ib/Ib mole)
p = vapor density (Ib/ft)

This equation shows that changes in gas composition or flowrate can influence pressure drop
measurements dramatically. Tracking the resistance coefficient (K) over time can indicate any
change in the gas flow path through the gas sparger. For a given gas volumetric flowrate and
density, an increase in K (caused by a restriction in the flow path, for example), will cause an
increase in pressure drop.

As noted in Section 3.1.3, three different gas sparger designs were utilized during the operation
of the Kingsport LPMEOH™ demonstration unit. A review of the performance of the devices

during the 69-month operating program is provided.

5.3.1 Initial Sparger Design (April — November 1997)

The LPMEOH™ demonstration unit was first brought onstream on 02 April 1997. Initial results
indicated that the scaled-up gas sparger did provide the necessary distribution of syngas at the
bottom of the reactor so that actual hydrodynamic behavior matched design expectations. In
addition, the heat transfer coefficient of the internal heat exchanger exceeded the design value,
further indicating good mixing. However, the measured pressure drop across the gas sparger
increased considerably throughout the first few weeks onstream. As shown in Figure 5.3.1-1, the
value for the resistance coefficient also reflected this trend, indicating the possibility that an
obstruction of the flow path of the reactor feed gas was occurring. During this same time,
periods of operation with no vapor flow through the gas sparger appeared to have no impact the
rate of change of pressure drop.
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Figure 5.3.1-1
Sparger Resistance Coefficient - Sparger Design #1 (April - November 1997)
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During a scheduled outage in May of 1997, an inspection of equipment associated with the
reactor, particularly the gas sparger, was performed. About 800 pounds of residual catalyst was
removed from the bottom head of the reactor during this exercise. A solid material (presumably
methanol synthesis catalyst) appeared to block about 50% of the flow path through the sparger; a
small amount of catalyst was found in the inlet piping to the sparger. There was no discernible
pattern to the blockage by the catalyst, and no significant construction debris was found in the
inlet piping or in the sparger. The sparger was removed from the reactor and cleaned. Structural
modifications increased the maximum allowable pressure differential across the sparger, but no
changes were made to its flow distribution characteristics. In addition to the inspection, a flush
connection of fresh process oil from the 29D-30 oil storage tank via the 29G-30 slurry transfer
pump to the gas inlet line to the reactor was added.

Upon restarting the LPMEOH™ demonstration unit on 17 June 1997, the pressure drop across
the gas sparger returned to its design value. However, the gas sparger pressure drop and
resistance coefficient did continue to increase with time onstream, although not as rapidly as the
April/May operation (see Figure 5.3.1-1). A flush by fresh oil through the new connection at the
gas inlet line yielded a decline in pressure drop through the gas sparger. However, the effects
were temporary, and the flow resistance continued to increase. Additional flushing with fresh oil
was limited, because fresh oil can only be added to the process at an average of 0.1 to 0.2 gpm to
match the rate of oil loss with the methanol product.
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The resistance coefficient experienced a significant step-change increase during a week-long
shutdown in early September of 1997. A practice of flushing the gas sparger with entrained
slurry from the 29C-06 cyclone and 29C-05 secondary oil knock-out drum was then initiated;
this was supplied at the average rate of liquid flow in the secondary oil knock-out drum and
cyclone (1 to 2 gpm). This flushing procedure was a batch-wise pumping process using the 29C-
30 catalyst reduction vessel and the slurry transfer pump. Flow resistance through the gas
sparger was stabilized at a manageable level by flushing in this manner (refer to Figure 5.3.1-1).
The rate of addition of the flush was 30 gpm, and it was performed 2 to 3 times per day at the
average rate of liquid flow through the cyclone and secondary oil knock-out drum.

On 09 October 1997 (Day 114), a new procedure was tested to gravity-drain the condensed oil
and entrained slurry continuously to the flush connection at the average rate of liquid flow in the
reactor loop, thus eliminating the batch-transfer operating steps. An inventory of condensed oil
was collected in the secondary oil knock-out drum, and the gravity-drain line to the flush
connection was then placed in service. Level in the secondary oil knock-out drum dropped and
the temperature at the bottom of the reactor fell slightly, confirming the flowing path of oil to the
reactor despite the already high pressure drop through the gas sparger.

During subsequent operation, the gravity-drain line became obstructed about twice per day. This
blockage, either resulting from accumulation of catalyst or from vapor-locking within the piping
system, cleared easily with a brief flush of clean oil from the oil storage tank via the 29G-03 oil
makeup pump. At this frequency of operation, the amount of fresh oil added to the process
during line flushing was less than the average oil loss rate with the methanol product (0.1 to 0.2
gpm). During the gravity-drain operation, the flow resistance coefficient across the gas sparger
showed some modest improvement, compared to the period in September when the condensed
oil and entrained slurry were pumped batch-wise via the slurry transfer pump.

On 03 November 1997, the LPMEOH™ demonstration unit was shut down in order to prepare a
second batch of fresh catalyst slurry. After the system was drained of spent catalyst, the
LPMEOH™ reactor was inspected by video camera. Dried catalyst slurry was observed in the
bottom head and around the gas sparger.

Preparations were then made to restart the LPMEOH™ reactor with a second partial charge of
fresh methanol synthesis catalyst. Batches of fresh catalyst slurry were activated in the catalyst
reduction vessel and stored in the slurry tank. On 26 November 1997, the first seven batches of
freshly reduced catalyst slurry were pressure-transferred from the slurry storage tank to the
LPMEOH™ reactor. N, flow was introduced through the gas sparger prior to beginning the
transfer operation, and the recycle compressor was started under N, at the completion of the
transfer. While this was occurring, the activation of the eighth batch of catalyst was proceeding
in the catalyst reduction vessel. Heat-up of the reactor using 600 psig steam on the internal heat
exchanger proceeded smoothly; however, the pressure drop at the bottom of the reactor increased
slowly, from 1.4 psi to 2.1 psi over a four-hour period. When the gas sparger was flushed at the
gas inlet piping connection using fresh oil from the oil storage tank, the pressure drop across the
sparger rose to about 7 psi. Then, when the eighth batch of slurry was transferred to the reactor
using the slurry transfer pump, the pressure drop rose to 14 psi. After this transfer, the recycle
compressor began to approach surge, indicating significant blockage at the sparger. Attempts to
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clean the flow path were unsuccessful, and the contents of the reactor were pressure-transferred
back to the slurry tank.

After completing the slurry transfer and securing the steam and syngas supplies, the manway on
the bottom of the reactor was opened. The gas sparger was found to be plugged with fresh
catalyst. In addition, a review of the data during the slurry transfer indicates that the N, flow to
the reactor was quite low, and that there was evidence that the gas inlet piping to the reactor had
filled with slurry during the transfer operation. Settling of the fresh catalyst appeared to have
occurred in the reactor and gas inlet piping, which resulted in the plugging of the gas sparger.

5.3.2 Second Sparger Design (December 1997 — February 1999)

Following the attempted restart of the LPMEOH™ demonstration unit in November of 1997, a
modified sparger design was developed by Air Products and fabricated and installed by Eastman.
Part of the reasoning for draining the initial charge of catalyst slurry from the process was to
demonstrate that the operation of the gas sparger could be maintained at the design flow
resistance coefficient by gravity-draining the condensed oil and entrained slurry to the flush
connection at the gas inlet piping to the LPMEOH™ reactor. Within 24 hours of restarting the
LPMEOH™ demonstration unit, the gravity-draining flow path for this material was placed in
service. As shown in Figure 5.3.2-1, the flow resistance through the gas sparger of the
LPMEOH™ reactor could be stabilized by use of this continuous flush. Performance of the
second sparger design showed significant improvement over the operating results from 1997,
however, a slight increase in resistance coefficient over time was still apparent.

On 15 October 1998 (Day 299), maintenance work was performed on the oil flush system that
cleans the taps used to measure the pressure drop across the gas sparger. Upon completion of
this work, the measured pressure drop increased by 2.0 psi. An analysis of other pressure
readings around the reactor was performed to determine the rate of increase of this pressure drop.
It appeared that the increase in pressure drop across the sparger occurred around the time of the
maintenance work. Another step-change increase in pressure drop occurred after restarting from
a complex-wide power outage in early November of 1998.

As aresult of the greater sparger pressure drop, condensed oil and entrained slurry could not be
gravity-drained to the flush connection at the gas inlet line to the reactor. In order to overcome
the pressure drop, the streams were batch-transferred to the catalyst reduction vessel and
returned to the reactor via the slurry transfer pump. This procedure was last used with the initial
sparger design in October of 1997. During periods when the catalyst reduction vessel was
otherwise in use, the condensed oil and entrained slurry streams were free-drained directly to a
connection on the reactor where the pressure drop was not limiting.
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Figure 5.3.2-1
Sparger Resistance Coefficient - Sparger Design #2 (December 1997 - February 1999)

26.00

n
[ L}
24.00 + a
22.00 '.. v
B T | ] 1
Lo "
20.00 + ] l'
18.00 + s
™ [ ]
[ ] l‘
16.00 + s
L]
14.00 + “
x n

12.00 +

10.00 +

8.00 +

6.00

4.00

| et

15 October 1998

2.00 +

0.00

200 250 300 350 400 450

Days Onstream (Catalyst Campaign 2)

0 50 100 150 500

During January and February of 1999 (around Days 377-435), the sparger resistance coefficient
across the LPMEOH™ reactor continued to increase beyond the step-change experienced in
October of 1998 (refer to Figure 5.3.2-1). The associated higher pressure drop within the reactor
loop limited the quantity of Balanced Gas that could be fed to the LPMEOH™ demonstration
unit.

During a schedule outage in March of 1999, the second version of the gas sparger was removed
from the LPMEOH™ reactor and inspected. It was estimated that the blockage in the sparger

was consistent with the resistance coefficient that was calculated prior to shutdown.

5.3.3 Current Sparger Design (March 1999 — Present)

During the outage in March of 1999, a modified gas sparger was installed in the reactor; Air
Products developed this design using the same principles as the previous two devices. During
that outage, a gravity drain line piping modification was also made to separate the condensed oil
from the oil knockout vessel from the entrained slurry from the cyclone. The condensed oil
stream is relatively clean and was used to continuously flush the sparger; the slurry from the
cyclone was sent directly into the reactor. The separation of these streams reduced plugging and
improved the overall reliability of the sparger flush and the oil return. Upon restarting on 14
March 1999, the performance of the new sparger met or exceeded the design expectations for
pressure drop and reactor operation, and stable operation was maintained for over 500 days
(refer to Figure 5.3.3-1).
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Figure 5.3.3-1
Sparger Resistance Coefficient - Sparger Design #3 (March 1999 - August 2001)
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After the restart of the LPMEOH™ demonstration unit on 04 August 2000 (Day 958 of Catalyst
Campaign 2), the resistance coefficient increased approximately 50% (from an average of about
4.3 to 6.6). Subsequent flushing of the sparger with clean oil resulted in a sizable reduction of
the increased flow resistance (to an average of 5.3). During the operating period between March
2001 (Day 1193 of Catalyst Campaign 2), the resistance coefficient did not appear to be further
increasing over time.

During this biennial outage, the sparger was removed from the LPMEOH™ reactor for
inspection and cleaning. In addition, all differential pressure transmitters around the sparger and
reactor were calibrated, and the pressure taps were cleaned. Following the restart of the unit
(Day 1217 of Catalyst Campaign 2), the resistance coefficient was higher than the value that was
calculated following the March 1999 outage. The most likely cause is that the recalibration of
the differential pressure transmitters had experienced a shift in their baseline measurement. The
sparger resistance continued to show no significant increase over time, which was consistent
with the operating history with this device.

In August of 2001, Catalyst Campaign 3 was started, during which the catalyst inventory was
removed and a new in-situ activation procedure was used to activate a full load of fresh catalyst
inside the reactor vessel (refer to Section 5.1). Figure 5.3.3-2 shows the sparger performance for
this operating period (August of 2001 to June of 2002). The sparger resistance showed no
increase over time during this period.
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Figure 5.3.3-2
Sparger Resistance Coefficient - Sparger Design #3 (August 2001 - June 2002)
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During the preparations for Catalyst Campaign 4 in June of 2002, the sparger was inspected and
cleaned. As shown in Figure 5.3.3-3, the performance of the sparger showed no significant
increase in resistance between following the restart on 27 June 2002 through to the end of the
operating program on 31 December 2002.
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Figure 5.3.3-3
Sparger Resistance Coefficient - Sparger Design #3 (June 2002 - 31 December 2002)
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5.3.4 Summary

The current design of the gas sparger for the LPMEOH™ reactor has been demonstrated to meet
the requirements for initial pressure drop and long-term performance. The device provides
operating flexibility through all modes of operation. The use of condensed or entrained

slurry, either by pump or by gravity draining, as a continuous or periodic flush through the
sparger has contributed greatly to the reliability of the sparger operation. This flushing system
and procedure is now a standard part of the design package for the LPMEOHLI Process.
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5.4 PROCESS VARIABLE TESTS: H,:CO RATIO

Syngas ratios will vary with the type of gasifier and feed used in an IGCC power plant
application. A key commercialization goal of the LPMEOH™ Demonstration Project was to
operate the LPMEOH™ reactor utilizing a wide variety of syngas feed ratios. Three different
feed gas streams were diverted from existing operations to the LPMEOH™ demonstration unit:

1) H, Gas, containing an excess of H, over the stoichiometric balance for the production
of methanol (as noted in Section 3.1, this stream was not used during the
demonstration test program);

2) CO Gas, a syngas containing primarily CO; and

3) Balanced Gas, a syngas with a composition of H,, CO, and CO; in stoichiometric
balance ([H, — CO,]/[CO + CO;] = 2.05) for the production of methanol.

With the availability of these feed gas streams, a wide range of syngas feed ratios, including
those from modern coal gasifiers, could be examined (subject to syngas availability). The
H,:CO ratio at the reactor inlet was set to the desired value by adjusting the total quantity of
fresh feed syngas and the Recycle Gas.

As noted in Section 2.1, the LPMEOH™ Process is particularly well suited to coal-derived
syngas which is rich in CO. Unlike gas-phase reactors, shift and CO, removal are not required
to adjust the composition to a particular requirement. Low H,-to-CO ratios are acceptable as is
any CO; content. These capabilities make the LPMEOH™ Process a potentially lower-cost
conversion route to methanol, especially when methanol coproduction is added to a coal-based
IGCC power plant. As shown in Table 4.1-1, several test campaigns were undertaken to study
the performance of the LPMEOH™ Process using CO-rich syngas. Three ranges of CO-rich
feed gases were generally tested: a syngas with a H,:CO ratio at the reactor inlet of
approximately 0.5, a syngas with a H,:CO ratio at the reactor inlet of about 0.7, and a syngas
with a H,:CO ratio at the reactor inlet of approximately 1.0. A table detailing all of the CO-rich
testing performed during the demonstration test program at the LPMEOH™ demonstration unit
is given in Table 5.4-1.

A total of 4 days of testing with a CO-rich syngas at a H,:CO ratio of about 0.5 (around 57
volume % [vol%] in the reactor feed gas stream) was conducted during the operating program.
The results for methanol production matched the performance based upon studies in the
laboratory autoclave. Due to the short duration of these tests, the rate of catalyst deactivation
could not be calculated.
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Table 5.4-1
Kingsport LPMEOH™ Process - H,:CO Ratio Testing

Duration H,:CO Ratio Reactor Methanol Catalyst
Date Date (days) @ Reactor Temperature Production Deactivation
Started Ended Inlet °O) (sT/D) Rate
(% per day)
5/1/97 5/8/97 2 0.43 250 70 na’
8/1/97 8/12/97 12 0.80 250 190 - 1.70
2/8/97 2/12/98 5 0.78 225 192 na
8/24/98 8/26/98 3 0.96 250 228 na
12/2/99 12/10/99 8 1.02 235 204 na
2/23/00 2/23/00 1 0.57 235 177 na
3/21/00 4/13/00 24 1.03 235 180 -1.24
5/9/00 5/10/00 1 ~0.5 250 NA na
11/15/00 11/18/00 4 1.08 235 220 na
5/9/01 5/13/01 5 0.65 235 117 na
10/29/01 10/29/01 1 0.64 218 156 na
12/12/01 12/17/01 6 0.68 224 142 na
12/24/01 12/29/01 6 0.76 226 143 na

a. na = operating campaigns were of insufficient length to calculate rate of catalyst deactivation.

A total of 35 days of testing with a CO-rich syngas at a H,:CO ratio of about 0.7 was conducted
during the operating program. During a 12-day campaign that was undertaken during Catalyst
Campaign 1 (early August of 1997), the rate of catalyst deactivation was calculated to be 1.7%
per day. This result was statistically similar to the rates calculated during this campaign when
Balanced Gas was used as the feed to the LPMEOH™ demonstration unit.

A total of 39 days of testing with a syngas at a H,:CO ratio of around 1.0 was conducted during
the operating program. A 24-day test was performed from 21 March 2000 to 13 April 2000.

The catalyst performance for this test period was calculated as a deactivation rate of 1.24% per
day. This rate was also statistically similar to the rates calculated using Balanced Gas during this
same period during Catalyst Campaign 2 (refer to Section 5.1.2).

In summary, a variety of H,:CO ratios were tested in the Kingsport LPMEOH™ demonstration
unit to evaluate the effect of syngas compositions on the performance of the LPMEOH™
Process. All of the results met the expectations for methanol production rate based upon earlier
studies in the laboratory. Catalyst performance for the LPMEOHO reactor with lower H,:CO
ratios were not significantly impacted based on the calculated rate of catalyst deactivation.
These results provide additional confirmation (beyond the performance during the 4-month
proof-of-concept test at the LaPorte AFDU in 1988/89 on CO-rich syngas) of the capability of
the LPMEOH™ Process to process syngas directly from all modern syngas generation systems,
including coal gasifiers.
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5.5 RAMPING AND ON/OFF TESTING

The ability of the LPMEOH™ Process to start and stop rapidly is an important feature within an
IGCC power plant application. In addition, the capability of the LPMEOH™ Process to perform
in an electrical demand environment will be required for the technology to be successfully
dispatched in these power generation applications. Although the host site for the LPMEOH™
demonstration unit was a chemical production facility, a test protocol was developed to evaluate
the ability of the reactor to ramp up and shut down quickly, and cycle on and off. These ramping
and on/off tests were conducted within the limitations of the rate of response of the existing
Eastman complex, in particular the limits on rate-of-change on the parallel fixed-bed methanol
plant and the impact of purge flow from the LPMEOH™ demonstration unit on the operation of
the downstream boiler system.

Opportunities to test the ability of the LPMEOH™ process to stop quickly occurred throughout
the operating program. Syngas could be stopped as quickly as the other systems within
Eastman’s chemicals-from-coal complex could handle the additional flow. It was also shown
that the recycle compressor could continue to operate until the reactor pressure, which decreased
either due to purge losses or continued consumption of H, and CO, reached the minimum flow
based upon approach to surge (around 85 psig).

In designing the test for the restart of the LPMEOH™ demonstration unit, a goal of 5 to 10%
change in design flow per minute, which meets the requirements for an IGCC system, was
established. The first test of the ability to ramp the LPMEOH™ reactor from a standby
condition to production rates was performed 13 June 2000. This test simulated the ramping that
must be performed within the startup requirements of an IGCC facility. An average ramping rate
of 3% of the design flow (990 KSCFH) per minute and a maximum ramp rate of 4% of the
design flow per minute was achieved, which approached the minimum target rate of 5% per
minute. Figure 5.5-1 shows the results of this initial ramping test.

Three additional ramping tests were performed between 04 and 13 March 2001. For the first two
tests (on 04 and 06 March), the reactor standby temperature was 216°C and 212°C, respectively;
from this starting point, a reasonable ramping rate could not be reached. During the third test on
13 March 2001, a standby reactor temperature of 227°C was used; for all of the tests performed
in March of 2001, gas flow from the recycle compressor was maintained to the LPMEOH™
reactor. Balanced Gas was then introduced to the process as quickly as possible (within the
limitations of other systems at the Eastman chemicals-from-coal complex). As shown in Figure
5.5-2, a maximum ramp rate of 5.7% full load per minute and an average ramp rate of 4.2% full
load per minute were achieved during this testing. This ramp performance approached the
minimum target ramp rate of 5% full load per minute. For each test, once Balanced Gas flowrate
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was reestablished and reactor temperature and pressure were placed into control, the
performance of the LPMEOH™ demonstration unit was determined to have returned to the
condition prior to the shutdown.

Two tests of the ability of the LPMEOH™ reactor to operate in a load-following environment
were performed during the week of 15 January 2001. For two consecutive days, the reactor was
taken offline for 12 hours, and then Balanced Gas was introduced to the process as quickly as
possible (within the limitations of other systems at the Eastman chemicals-from-coal complex).
The attempts to perform these ramping tests were hampered by the standby conditions that were
selected, including the lack of flow to the reactor (which lowered the reactor heat transfer
coefficient) and the reactor temperature (180°C). Once Balanced Gas flowrate was reestablished
and reactor temperature and pressure were placed into control, the performance of the
LPMEOH™ demonstration unit, including the gas sparger in the reactor, was determined to have
returned to the condition prior to the shutdown.

During these tests, it was shown that the LPMEOH™ demonstration unit was capable of meeting
the ramping requirements for an IGCC system by achieving the goal of a minimum 5% change in
design flow per minute. Tests of the ability of the LPMEOH™ reactor to operate in a load-
following environment were also successful; the performance of the LPMEOH™ demonstration
unit, including the gas sparger in the reactor, was determined to have returned to the condition
prior to the commencement of the on/off testing.

5.6 IN-SITU ACTIVATION AND TEMPERATURE PROGRAMMING

Depending upon the H,:CO ratio and level of catalyst poisons in the fresh feed gas and site-
specific requirements, it may be economical to operate the LPMEOH™ Process in the same
manner as conventional gas-phase reactor systems - that is, charge the maximum amount of
unreduced catalyst slurry to the LPMEOH™ reactor, perform the catalyst reduction (reacting
metal oxides [for example, copper oxide] with a reductant such as CO or H; to produce the base
metal plus either CO, or H,O) within the reactor vessel (so-called in-situ activation), and
practice temperature programming (the increase of reactor temperature as necessary to control
the reactor purge flowrate and maintain reactor volumetric productivity) to extend the catalyst
life. In this scenario, eliminating the need for a separate catalyst activation vessel, slurry
addition pump, and other subsystems can lower capital costs. There has been interest from
potential customers for the LPMEOH™ Process to demonstrate in-situ catalyst activation at the
LPMEOH™ demonstration unit; as a result, tests of both the activation procedure (a base case
and an improved procedure) and the subsequent temperature programming were performed
during the demonstration.

5.6.1 Preparatorv Engineering and Laboratory Work

Preliminary process simulation work was performed in January of 2000 in order to determine the
operating conditions that could be used (based upon site-specific limitations) during a potential
test of in-situ catalyst activation within the LPMEOH™ reactor. For example, the amount of
purge gas flow from the LPMEOH™ demonstration unit (Stream 148 of Figure 2.4-1) was
limited based upon the capacity of the downstream boiler system; this established the maximum
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quantity of gas (dilute Balanced Gas in N;) that could be fed during the catalyst activation
procedure. A test to determine the minimum operating pressure and corresponding flowrate of
N, that could be generated by the recycle compressor was performed in March of 2000. This
information was then used to modify the procedure and determine conditions for a confirmation
test in the laboratory autoclave. Laboratory testing of the proposed procedure was then
undertaken to verify the operating conditions.

In July of 2000, Air Products and Eastman initiated the engineering activities in support of the
demonstration of the in-situ activation of methanol synthesis catalyst in the LPMEOH™ reactor.
Piping and instrumentation changes were needed to allow for the introduction of the Balanced
Gas and N, streams at the proper flowrates per the proposed procedure. Air Products released a
process engineering specification for these changes in August of 2000. Eastman then developed
a detailed design package that defined the necessary modifications to the piping and instrument
systems. In order to minimize downtime, the field modifications were completed during a
scheduled code biennial inspection of all pressure vessels within the LPMEOH™ demonstration
unit in March of 2001. A detailed operating procedure was drafted by Air Products and
reviewed by Eastman prior to the initiation of the first in-situ activation of methanol synthesis
catalyst in August of 2001.

5.6.2 In-situ Activation Procedure and Results - August 2001

The LPMEOH™ demonstration unit was shutdown on 06 August 2001 to prepare for the first
test of the in-situ catalyst activation procedure. The slurry contents of the reactor from Catalyst
Campaign 2 were drained from the system. Beginning on 13 August 2001, batches of fresh
catalyst were mixed with mineral oil in the catalyst reduction vessel, heated to 150°C, and
transferred, without being reduced (or activated), to the slurry tank. A total of ten batches of
fresh catalyst slurry, each containing about 4,000 pounds of fresh catalyst, were prepared in this
manner. After the final transfer, the total catalyst inventory in the slurry tank was 41,580 pounds
of fresh catalyst, which was approximately the design catalyst inventory for the LPMEOH™
reactor. The catalyst loading and transfer operation to the slurry tank was completed on 21
August 2001.

The common inlet and outlet line of the slurry tank (2 diameter) developed a plug during the
transfer of the tenth batch of fresh catalyst slurry from the catalyst reduction vessel. After
modifications to the piping system were made, Eastman operations personnel were able to clear
this obstruction, and the contents of the slurry tank were then successfully transferred into the
LPMEOH™ reactor. The transfer of fresh catalyst slurry to the reactor was completed 22
August 2001.

Immediately upon completion of the slurry transfer, the recycle compressor was started on N to
begin to cool the reactor contents to less than 90°C, which was the desired initial temperature for
catalyst activation. After this step was completed, the in-situ catalyst activation procedure was
started at 2300 hrs on 22 August 2001. Make-up N, flow was controlled at 52 KSCFH, and a
small quantity of Balanced Gas was introduced into the discharge of the recycle compressor to
ensure that sufficient reductant was present at all times in the reactor inlet. Temperature control
was a manual ramping operation using the steam drum pressure as a control point. A reactor
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temperature ramp from 88°C to 215°C over a 27-hour period was used. The in-situ catalyst
activation procedure ended at 0100 hrs on 24 August 2001.

The progress of the in-situ catalyst activation procedure was tracked by evaluating the uptake of
reductant (H; and CO) by the catalyst. An uptake of 70% of the theoretical value was calculated
based upon analytical data and measured flowrates. Figure 5.6-1 shows the uptake performance
during the first in-situ activation as compared to the performance obtained in the laboratory
autoclave during the testing in 2000. The LPMEOH™ demonstration unit was then restarted at
1200 hrs on 24 August 2001. As described in Section 5.1.3, the performance of the methanol
synthesis catalyst was also lower than expected as calculated from an in-house kinetic model.
Catalyst samples that were taken from the reactor following the in-situ catalyst activation did not
provide conclusive results.

An assessment of the performance of the methanol synthesis catalyst following the completion of
the in-situ activation procedure in August of 2001 was completed. Based on laboratory studies,
it was found that storage of the fresh catalyst in the presence of mineral oil at elevated
temperatures (the experiments were performed at approximately 200°C) prior to reduction was
the cause of the lower than expected catalyst activity. During the initial demonstration of the in-
situ activation procedure at the LPMEOH™ demonstration unit, the slurry was approached this
temperature in the slurry tank, where batches of fresh catalyst slurry were stored during the
catalyst loading procedure.

Figure 5.6-1
Reductant Gas Uptake vs. Temperature - In-Situ Catalyst Activation
(22-24 August 2001)
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5.6.3 Temperature Programming (August 2001 — March 2002)

Following the completion of the in-situ catalyst activation procedure, conditions were selected to
deal with the hyperactivity that typically occurs when fresh methanol synthesis catalyst is
initially exposed to syngas. During the first few weeks of operation, conditions were varying
between a

reactor pressure of 550-600 psig, reactor temperature of 212-220°C, and flowrate of Balanced
Gas of 500-525 KSCFH. Once the hyperactivity period had passed, operating conditions were
set at 218°C reactor temperature, 685 psig reactor pressure, and 600-650 KSCFH of Balanced
Gas.

As part of the operating protocol following the completion of the in-situ activation of methanol
synthesis catalyst in the LPMEOH™ reactor, temperature programming continued during the
operating period; this involved the increase of reactor temperature as necessary to control the
reactor purge flowrate and maintain reactor productivity. Over the entire period spanning
August of 2001 to March of 2002, the reactor temperature was increased from 218°C to the final
temperature of 250°C (250°C was the design temperature for the LPMEOH™ demonstration
unit). The reactor pressure was increased from 685 psig to 700 psig on 12 November 2001 and
maintained at that level for the balance of the operating period. The flowrate of Balanced Gas
was controlled at an average value of 630 KSCFH during this time.

The first operating test using methanol synthesis catalyst activated in-situ was completed on 25
March 2002 when a catalyst withdrawal and addition campaign was undertaken to increase

catalyst activity.

5.6.4 Second In-situ Activation Procedure and Results (June 2002)

Based upon the results of the laboratory assessment following the August 2001 in-situ catalyst
activation, operating steps were modified so that the fresh methanol catalyst would not be
exposed to temperatures in excess of 100°C prior to the introduction of dilute syngas. A
recommendation to DOE to perform a second test of the in-situ catalyst activation procedure was
accepted.

Beginning on 21 June 2002, batches of fresh catalyst were mixed with mineral oil in the catalyst
reduction vessel, heated to 100°C, and transferred, without being reduced or activated, directly to
the reactor. Since the slurry tank was not used to collect the batches, the process was greatly
simplified and shortened (from 8 days to 3 days) compared with the first in-situ activation
procedure in August of 2001. A total of eleven batches of fresh catalyst slurry, each containing
about 3,700 pounds of fresh catalyst, was prepared in this manner. After the final transfer, the
total amount of fresh catalyst in the reactor was 40,040 pounds, which is approximately the
design catalyst inventory for the LPMEOH™ demonstration unit. N, was introduced in the
bottom of the reactor during the entire loading procedure, and the unreduced catalyst in the
reactor was maintained at 100°C by adding steam as necessary to the steam drum and internal
heat exchanger. The catalyst loading and transfer operation was completed on 24 June 2002.
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The reactor was cooled overnight to the desired initial temperature for catalyst activation; the
recycle compressor was started on N to assist in cooling the reactor contents. By 0800 hours on
25 June 2002, the reactor inlet flow was set at approximately 300 KSCFH, and 52 KSCFH of
make-up N, was introduced at the compressor suction. Reactor pressure was set at 85 psig.
Cooling was completed after the reactor temperature reached 86°C.

The in-situ catalyst activation procedure was started at 1200 hrs on 25 June 2002. In addition to
the 52 KSCFH of N, a small quantity of Balanced Gas was introduced into the discharge of the
recycle compressor to ensure that sufficient reductant was present at all times in the reactor inlet.
A temperature ramp from 87°C to 215°C was conducted over a period of 51 hours, which was a
slower ramp rate than was used during the first in-situ activation. The in-situ catalyst activation
procedure ended at 0200 hrs on 27 June 2002.

The progress of the in-situ catalyst activation procedure was tracked by evaluating the uptake of
reductant by the catalyst. A reductant gas uptake of 98% of the theoretical value was calculated
based upon analytical data and measured flowrates, which was an indication that the methanol
synthesis catalyst was properly activated during the in-situ catalyst activation procedure. Figure
5.6-2 shows the excellent uptake performance of the second in-situ activation as compared to the
performance obtained in the laboratory autoclave.

Figure 5.6-2
Reductant Gas Uptake vs. Temperature - In-Situ Catalyst Activation
(25-27 June 2002)
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The LPMEOH™ demonstration unit was then re-started at 1500 hrs on 27 June 2002. In
addition, the initial value for n (as defined in Section 5.1) was calculated to be 1.23, which was
representative of a properly activated catalyst. In addition, the startup conditions for this charge
of methanol synthesis catalyst were less severe (pressure of 450 psig and 214°C reactor
temperature) than those following the first in-situ catalyst activation (550-600 psig, reactor
temperature of 212-220°C) while processing a greater quantity of Balanced Gas (603 KSCFH vs.
500-525 KSCFH). These results showed a clear improvement when compared with the
performance of the methanol synthesis catalyst following the first in-situ activation procedure.
As noted in Section 5.1.4, due to the low catalyst deactivation rate experienced following the
second in-situ activation, the practice of temperature programming was not required during the
remainder of the operating program of the LPMEOH™ Demonstration Project.

5.6.5 Summary

The in-situ activation procedure was successfully demonstrated at the LPMEOHU
demonstration unit. Following the initial trial in August of 2001, revisions to the activation
procedure, including a limitation on the storage temperature for the fresh catalyst slurry and a
much slower temperature ramp rate during the activation procedure, were made. Temperature
programming was found to be a very practical approach to maintaining reactor productivity
during the

operating program following the first in-situ activation; although the reactor temperature did not
have to be increased during Catalyst Campaign 4 (June-December of 2002), the selection of the
minimum reactor temperature necessary to meet the desired methanol production rate may have
been a factor in the low rate of catalyst deactivation that was calculated during this operating
period (as described in Section 5.1.4).
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Feedstock and Catalyst Life Testing at Eastman Chemical Company (Kingsport, TN)”, Topical
Report Prepared by Air Products and Chemicals, Inc., DOE Cooperative Agreement No. DE-FC22-
95PC93052, March 1997.

d. “Alternative Fuels Field Test Unit Support to Kingsport LPMEOH™ Demonstration Unit Topical
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Conversion Co., L.P., DOE Cooperative Agreement No. DE-FC22-92PC90543, November 1998.
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6.0 ENVIRONMENTAL PERFORMANCE

6.1 INTRODUCTION

As part of the requirements for DOE to fulfill its
responsibility under the National Environmental Policy
Act (NEPA) of 1969, the Partnership prepared a detailed
Environmental Information Volume (EIV)® describing
the environmental aspects and projected impacts of the
LPMEOH™ Demonstration Project. DOE then prepared
an Environmental Assessment (EA)(b) for the Project, and
determined that an Environmental Impact Statement was
not required. A Finding of No Significant Impact
(FONSI) was issued on 30 June 1995.

The Partnership then prepared an Environmental
Monitoring Plan (EMP)® which described in detail the
environmental monitoring activities to be performed
during the operation of the LPMEOH™ demonstration
unit. In order to quantify the environmental performance of the LPMEOH™ demonstration unit,
a comparison of the estimated quantities of emissions, effluents, and solids for disposal from the
EA with the results from the LPMEOH™ demonstration unit is provided in this Section.

6.2 WASTE STREAMS AND THEIR DISPOSAL

6.2.1 Spent Catalyst Slurry

The LPMEOH™ Process uses conventional low-temperature methanol synthesis catalyst
(comprised primarily of oxides of copper and zinc) in powder form, slurried in a mineral oil that
is inert at reaction conditions. Over time, these catalysts, whether used in conventional fixed-
bed reactor systems or the LPMEOH™ Process, will show a decrease in catalytic activity. This
aging phenomenon is caused by both the presence of the catalyst at the reaction conditions (most
likely temperature) and by the chemical poisoning of the catalyst by trace contaminants within
the system (for example: sulfur, iron, nickel, and arsenic are known catalyst poisons). In order
to maintain the same level of production of methanol across the reactor, one of two methods can
be used:

1) The process conditions can be altered to increase the rate of production of methanol
(this 1s typically accomplished by slowly increasing the reactor temperature with
time, and is the method that is used in the fixed-bed methanol processes)

2) A portion of the volume of catalyst slurry within the reactor can be removed and
replaced with an equal volume of fresh catalyst slurry.

As noted in Section 5.1, the original design of the LPMEOH™ Process called for the use of
catalyst withdrawal and addition to maintain the production rate of methanol. This method tends
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to use larger quantities of methanol synthesis catalyst, as a portion of the catalyst that is removed
from the LPMEOH™ reactor has greater activity than the average catalyst particle within the
process.

However, the operating tests following the in-situ activation of methanol synthesis catalyst
within the LPMEOH™ reactor have also demonstrated the ability to temperature program the
reactor and maximize the on-stream time of the catalyst (refer to Section 5.6).

Table 6.2-1 provides the annual amount of spent catalyst slurry that was generated by the
LPMEOH™ Process during the demonstration test period. The average annual generation rate is
less than the projected rate as reported in the final EA for the LPMEOH™ Demonstration
Project. During the period from April of 1997 through July of 2001, the catalyst
withdrawal/addition method was used to maintain the rate of production of methanol across the
LPMEOH™ reactor. In addition to this periodic transfer of a portion of the catalyst slurry from
the process, the entire contents of the LPMEOH™ reactor were drained on two occasions (in
November of 1997, following the initial accelerated rate of deactivation related to the presence
of iron on the catalyst; and in July of 2001, in preparation for the first attempt to activate the
methanol catalyst using the in-situ activation procedure). Between August of 2001 and March of
2002, temperature programming was used following the in-situ activation of the methanol
synthesis catalyst within the LPMEOH™ reactor. A brief period of catalyst withdrawal and
addition then followed until the contents of the reactor were drained in June of 2002 and the
second attempt to demonstrate the in-situ activation procedure was successfully completed.

All of the spent catalyst slurry was shipped on a periodic basis from the LPMEOH™
demonstration unit to a company which reclaimed the metallic components (copper and zinc)
from the catalyst.

Table 6.2-1
Spent Catalyst Slurry from LPMEOH™ Demonstration Unit

Year of Operation Spent Cz.ltalyst Slurry to Comments
Reclaimer, pounds
April 1997 — March 1998 91,100 Onstream 02 April 1997
April 1998 — March 1999 22,500
April 1999 — March 2000 126,400
April 2000 — March 2001 76,450
April 2001 — March 2002 145,140
April 2002 — December 2002 95,205
Annual Average 92,800 Projected to March 2003
Expected Value 103,100 to 128,000 Refer to Final EA for Project®™
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6.2.2 10C-30 Catalyst Guard Bed

As shown in Figure 1.2.3-1, the 10C-30 catalyst guard bed is located within the Eastman
chemicals-from-coal complex, upstream of both the LPMEOH™ demonstration unit and the
existing gas-phase methanol reactor. Prior to the startup of the LPMEOH™ demonstration unit,
this catalyst guard bed had been charged with both zinc oxide and manganese dioxide in order to
remove trace quantities of sulfur and arsenic that are present in Balanced Gas. Table 6.2-2
shows the type and quantity of adsorbent materials that were used in this service during the
demonstration period for the LPMEOH™ Process at Kingsport.

6.2.3 29C-40 Carbonyl Guard Bed

As shown in Figure 2.4-1, the 29C-40 carbonyl guard bed is located within the LPMEOH™
demonstration unit, and was designed to remove trace levels of metal carbonyls (iron and nickel)
that could be present in either the Balanced Gas or CO Gas streams. Table 6.2-3 shows the type
and quantity of adsorbent materials that were used in this service during the demonstration
program for the LPMEOH™ Process at Kingsport. Details on the technical selection for the
adsorbent materials used in the carbonyl guard bed are provided in Section 5.2. The expected
quantity of adsorbent during the design phase of the project was a single charge of 10,000
pounds of activated carbon over a four-year period. Due to the adverse impact of trace
contaminants (in particular arsenic) that are poisons to methanol synthesis catalysts, additional
types and combinations of adsorbents were used in the carbonyl guard bed.

In Section 4.4.2 of the EMP, incineration was considered to be the means of disposal of the spent
activated carbon. Given the change in the type of adsorbent and the presence of arsenic,
Eastman performed the testing necessary to characterize the copper-impregnated activated
carbon and determine the appropriate means of disposal. The Toxicity Characteristic Leaching
Procedure

Table 6.2-2
10C-30 Catalyst Guard Bed
Adsorbents Used during Operation of LPMEOH™ Demonstration Unit

Adsorbent Material Targeteq Catalyst Time in Service
Poison
(1) Zinc Oxide (155 cubic feet) (1) Sulfur B
(2) Manganese Dioxide (75 cubic feet) (2) Arsenic 1995 — September 1997
(1) Zinc Oxide (155 cubic feet) (1) Sulfur B
(2) Manganese Dioxide (75 cubic feet) (2) Arsenic October 1997 — June 1999
Manganese Dioxide (230 cubic feet) Arsenic June 1999 — October 2002
Manganese Dioxide (230 cubic feet) Arsenic October 20(()020; grlluli)negc)ember 2002
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Table 6.2-3
29C-40 Carbonyl Guard Bed
Adsorbents Used during Operation of LPMEOH™ Demonstration Unit

Adsorbent Material Targeteq Catalyst Time in Service
Poison
Activated Carbon (6,300 pounds) Iron, Nickel April 1997 — November 1997
Activated Carbon (6,553 pounds) Iron, Nickel December 1997 — June 1999

(1) Manganese Dioxide (2,900 pounds) (1) Arsenic
(2) Activated Carbon (2,200 pounds) (2) Iron, Nickel
Copper Oxide-impregnated Activated Arsenic, Sulfur,

June 1999 — July 2000

August 2000 — July 2001

Carbon (4,892 pounds) Iron, Nickel
Copper Oxide-impregnated Activated Arsenic, Sulfur,

Carbon (5,336 pounds) Tron, Nickel August 2001 — February 2002
Copper Oxide-impregnated Activated Arsenic, Sulfur,

Carbon (5,073 pounds) Iron, Nickel March 2002 — June 2002
Copper Oxide-impregnated Activated Arsenic, Sulfur,

Carbon (5,810 pounds) Iron, Nickel June 2002 — October 2002
Copper Oxide-impregnated Activated Arsenic, Sulfur, October 2002 — 31 December 2002

Carbon (5,225 pounds) Iron, Nickel (continuing)

(TCLP) was used to determine the metals and total concentration for organics; the results from
the testing for various samples are provided in Environmental Monitoring Report Nos. 14, 19,
and 22 (References 36, 39, and 44 in Section 12). Only one of the three samples exceeded the
regulatory limit for arsenic. Even though the other material could have been incinerated,
Eastman decided to classify the material as hazardous for arsenic (U.S. Environmental Protection
Agency (EPA) Hazardous Waste Code D004) under the Resource and Conservation Recovery
Act (RCRA) due to the uncertainty associated with the detection limit for arsenic. However, the
incinerator did not accept material with this waste code. This led to the selection of a permitted
hazardous waste landfill as the site to dispose of this spent adsorbent. Prior to landfilling, this
facility stabilized the material to ensure that the leachate contained less than 5 ppmw arsenic.

6.2.4 Waste Oil

As part of the design of the LPMEOH™ demonstration unit, an oil-water separator was included
to collect any spill of the process mineral oil during operation or maintenance. During the
demonstration program, oil was collected on a periodic basis and sent to incinerator equipment
within the Eastman chemicals-from-coal complex for energy recovery. Table 6.2-4 shows the
quantity of waste oil that was collected in the oil-water separator during the demonstration
program for the LPMEOH™ Process at Kingsport. During the design phase, the annual quantity
of waste oil from the oil-water separator was expected to be 13,000 pounds; the average amount
observed during the demonstration period should be used as the basis during the design of future
plants.
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Table 6.2-4
Waste Oil from LPMEOH™ Demonstration Unit

Year of Operation Waste Oil, pounds Comments
April 1997 — March 1998 24,000 Onstream 02 April 1997
April 1998 — March 1999 24,000
April 1999 — March 2000 42,000
April 2000 — March 2001 6,000
April 2001 — March 2002 0
April 2002 — December 2002 48,000
Annual Average 25,040
Expected Value 13,000 Refer to Final EA for Project™

In addition, a one-time test was performed in June of 2002 to identify potential sources of iron
contamination within the LPMEOH™ Process. Mineral oil (in the absence of methanol
synthesis catalyst) was heated in the presence of syngas, and sampling of the syngas stream was
performed to determine the concentration of iron carbonyl. This quantity of oil (35,600 pounds)
was also incinerated for energy recovery.

6.2.5 Recovered Distillation Liquids

As shown in Figure 2.4-1, a Crude-Grade Methanol stream containing about 25% of the
methanol that was produced in the LPMEOH™ reactor was sent to existing distillation
equipment within the Eastman chemicals-from-coal complex for further distillation. This stream
contained a small quantity of the mineral oil that is used in the preparation of the methanol
catalyst slurry. Table 6.2-5 shows the quantity of oil that was collected in the Eastman

Table 6.2-5
Oil Collected in Distillation Equipment from LPMEOH™ Process

Year of Operation Oil Collected, pounds Comments
April 1997 — March 1998 0 Onstream 02 April 1997
April 1998 — March 1999 178,269
April 1999 — March 2000 34,100
April 2000 — March 2001 116,533
April 2001 — March 2002 221,855
April 2002 — December 2002 110,557
Annual Average 115,010
Expected Value 324,000 Refer to Final EA for Project®™
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distillation equipment during the demonstration period for the LPMEOH™ Process at Kingsport.
The average annual generation rate is less than the projected rate as reported in the final EA for
the LPMEOH™ Demonstration Project.

6.2.6 Waste Water

The chemistry for the production of methanol from syngas (refer to Section 2.1) also yields
water as a byproduct. This water is separated from the Refined-Grade Methanol in the 29C-20
methanol rectifier column, and exits the LPMEOH™ demonstration unit with the Crude-Grade
Methanol stream. After further distillation in existing equipment within the Eastman chemicals-
from-coal complex, the water from the LPMEOH™ Process is combined with other streams and
fed to the Eastman water treatment system. During the operation of the LPMEOH™
demonstration unit, Eastman provided reports on the samples taken at the discharge point from
the water treatment system to the Holston River. As noted in the Environmental Monitoring
Reports (referenced in Section 12), there were no excursions for any of the parameters that were
tested as required by the National Pollutant Discharge Elimination System (NPDES) permit for
the Eastman chemicals-from-coal complex.

6.3 POTENTIAL ENVIRONMENTAL CONCERNS

Based upon the excellent environmental performance at the LPMEOH™ demonstration unit, the
use of the technology in future applications should cause no significant impact on the local
environment. Site-specific considerations should be made regarding the disposal options for the
spent catalyst slurry (for example, the cost of and proximity to a catalyst reclaiming operation).
In addition, the benefits of recovery and reuse of the oil streams from the oil-water separator and
the distillation system (where used) should also be evaluated on a site-by-site basis.

6.4 SECTION 6 BIBLIOGRAPHY

a. “Commercial-Scale Demonstration of the Liquid-Phase Methanol (LPMEOH™) Process -
Environmental Information Volume”, Prepared by Air Products Liquid Phase Conversion Co., L.P., DOE
Cooperative Agreement No. DE-FC22-95PC93052, May 1996.

b. “Final Environmental Assessment for the Liquid Phase Methanol (LPMEOH™) Project”, DOE/EA-
1029, June 1995.

c. “Commercial-Scale Demonstration of the Liquid-Phase Methanol (LPMEOH™) Process - Final
Environmental Monitoring Plan”, Prepared by Air Products Liquid Phase Conversion Co., L.P., DOE
Cooperative Agreement No. DE-FC22-95PC93052, August 1996.
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7.0 METHANOL PRODUCT-USE TESTING

7.1 INTRODUCTION

The LPMEOH™ Process is a very effective technology for converting a portion of an IGCC
electric power plant's coal-derived syngas to methanol, as depicted in Figure 7.1-1. The process
has the flexibility to handle wide variations in syngas composition. It can be designed to operate
in a continuous, baseload manner, converting syngas from oversized gasifiers or from a spare
gasifier. Alternatively, the process can be designed to operate only during periods of off-peak
electric power demand, consuming a portion of the excess syngas and reducing the electricity
output from the combined-cycle power unit. In this scenario, the gasification unit continues to
operate at full baseload capacity, so that the IGCC facility's major capital asset is always fully
utilized.

In either baseload or cycling operation, partial conversion of between 20% and 33% of the IGCC
plant's syngas is optimal, and conversion of up to 50% is feasible. The required degree of
conversion of syngas, or the quantity of methanol relative to the power plant size, determines the
design configuration for the LPMEOH™ unit. In its simplest configuration, syngas at maximum
available pressure from the IGCC power plant's gasifier system passes once-through the
LPMEOH™ unit and is partially converted to methanol without recycle, water-gas shift, or CO,

Figure 7.1-1
Once-through Methanol Coproduction with IGCC Electric Power
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removal. The unreacted gas is returned to the IGCC power plant's combustion turbines. If
greater syngas conversion is required, different design options are available.

Methanol which is produced directly from CO-rich syngas has only 1 wt% H,O in the condensed
stream entering the first distillation column. Significant capital and operating costs
(corresponding to a purification cost of $0.02 to $0.04 per gallon of methanol) can be avoided if
stabilized methanol, which is produced via removal of dissolved gases such as CO; from the first
column, can be directly used in some chemical and power systems. The Statement of Work from
the Cooperative Agreement defines the scope of work for the studies associated with the testing
of this as-produced methanol:

“The methanol product must be adequate for its intended use. Therefore, the economic upgrading of the
methanol product will be demonstrated as part of Phase III, Task 2.1 (LPMEOH™ Process
Demonstration Facility Operation — Methanol Operation), and the suitability of using the product will be
demonstrated as part of Phase 111, Tasks 3 (On-site Testing (Product Use Demonstration)) and 4 (Off-site
Testing (Product Use Demonstration)). The product use demonstrations will include fuel use and
chemical use product testing. The fuel use applications may include use in transit buses and car pools and
for the generation of stationary power for public, industrial and electric utilities.”

7.2 ON-SITE TESTING OF METHANOL

As noted in Section 1.2.4, the methanol that is produced at the LPMEOH™ demonstration unit
was used by Eastman in the production of methyl acetate and, ultimately cellulose acetate and
acetic acid. Beginning with the startup of the LPMEOH™ demonstration unit, Eastman
monitored the quality of the Refined-Grade Methanol as determined by a set of in-house fitness-
for-use criteria. These criteria, as well as a summary of the results of the analysis of over 7.19
million gallons of Refined-Grade Methanol produced in 1997, are provided in Table 7.2-1.
Occasionally, a lot tank sample fell outside an internal manufacturing limit. Through 31
December 1997, a total of 24 samples of refined methanol failed to meet one of the analytical
tests. Refined-Grade Methanol is pumped from the methanol lot tanks within the battery limits
of the LPMEOH™ demonstration unit to a primary methanol storage tank elsewhere within the
Eastman complex. When results of a sample of Refined-Grade Methanol fall outside the fitness-
for-use criteria, Eastman evaluates the impact of this material on the contents of this primary
storage tank. As long as the properties of the methanol in this tank stay within the methanol
specification, the lot of Refined-Grade Methanol can be accepted. All 24 lots of Refined-Grade
Methanol that have failed to meet all of the fitness-for-use criteria have been accepted in this
manner. Over the entire 69-month operating program for the LPMEOH™ demonstration unit,
over 103.9 million gallons of methanol was produced, and Eastman accepted all of the available
methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic
acid.

An opportunity to demonstrate the use of methanol directly from the LPMEOH™ Process in the
production of methyl acetate occurred on 08 February 1998. During a planned five-day outage
in Eastman’s shift reactor, operations continued in the LPMEOH™ demonstration unit with a
H,:CO ratio in the reactor feed of 0.7, while Eastman’s gas-phase methanol plant was forced to
shut down. Furthermore, Eastman took the opportunity to shut down their methanol distillation

7-2
Kingsport LPMEOH™ CCT Project Final Report: Volume 2 (June 2003)



Table 7.2-1
Refined-Grade Methanol from LPMEOH™ Demonstration Unit
Quality and Fitness for Use (1997)

1 2 3 4 5 6 7
Property LIML UIML # Obs. Avg. Min. Max. # Out IMLs

Acetone, ppm 125 207 11.217 10 30 0
Appearance pass pass 207 3
Color by pcs 5 207 5 5 5 0
Decane, ppm 12 207 10.642 10 76 5
Ethanol, ppm 500 207 101.01 100 220 0
Water, % by Coulemetric 170 0.0094 0.0023 0.0571
Water, % by Titration 0.03 96 0.0127  0.0023  0.0581 5
Acetic Acid, % 0.003 207 0.0004  0.0002 0.003 0
Methanol, % 99.9 207 99.985 99.92 100 0
Alkalinity, ppm 0.8 51 0.596 0.1 2.3 11
Specific Gravity @ 20/20 0.792 0.793 96 0.7928 0.792 0.793 0
Notes:
1) Terms:

Column 1 - Lower Internal Manufacturing Limit

Column 2 - Upper Internal Manufacturing Limit

Column 3 - Number of lot tank samples analyzed for this test

Column 4 - Average value of analytical test for all lot tank samples

Column 5 - Minimum value of analytical test for all lot tank samples

Column 6 - Maximum value of analytical test for all lot tank samples

Column 7 - Number of lot tank samples falling outside Internal Manufacturing Limit

2) Analysis is performed on each lot with the exception of:
Alkalinity - every 4th lot
Specific Gravity - every other lot

3) The Coulemetric water test was replaced by a water titration in August of 1997.

equipment for maintenance, leaving no flow path for the Crude-Grade Methanol underflow from
the second, rectifier column in the LPMEOHL] demonstration unit. However, because of the
CO-rich feed, the rectifier column could be shut down for the production of stabilized methanol
(98+ wt% methanol, <1 wt% H,0). Approximately 12,000 gallons of stabilized methanol was
loaded into trailers and shipped off-site for future product-use testing. During the remainder of
this operating period, approximately 181,800 gallons (600 short tons) of stabilized methanol
(99.3 wt% methanol, 0.3 wt% H,0O) was pumped directly from the LPMEOH[ demonstration
unit to Eastman’s methyl acetate plant, bypassing the normal route through the distillation
equipment.

This methanol was considered acceptable by Eastman because of the low levels of all impurities.
In particular, the HO concentration of the stabilized methanol was significantly lower than what
is produced during operation on the normal Balanced Gas supply (typically 3-4 wt% H,0O). This
is a result of operation on a CO-rich syngas with a relatively low CO, concentration. This test
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was the first attempt to feed a stabilized methanol stream with low water content directly into
one of Eastman’s downstream chemical processes, providing another indication of the flexibility
of the LPMEOHLUL Process. Eastman’s only alternative was to flare the syngas stream, which
was undesirable both environmentally and economically.

7.3 OFF-SITE PRODUCT-USE TESTING OF METHANOL

The product-use test program attempted to develop broader market applications and commercial
fuels comparisons by evaluating new utility dispersed electric power developments, and possibly
new mobile transport engine developments. The objective of the product-use test program was
to demonstrate commercial market applications for the stabilized methanol as a replacement fuel
and as a fuel supplement. During the program definition phase, attempts were made to develop
sites to test stabilized methanol in municipal, industrial, and utility applications and as fuel
supplements for gasoline, diesel, and natural gas. These tests were envisioned based upon the
U.S. energy market needs projected through the 2018 time period when the LPMEOH™
technology is expected to be commercialized.

Because the generation of electric power is not a feature of the demonstration project at
Kingsport, the coproduction of methanol with electric power could not be demonstrated.
However, the product-use test program was developed to provide data on potential applications
of stabilized methanol in order to enhance the early commercial acceptance of central clean coal
technology processing facilities, coproducing electricity and methanol to meet the needs of the
local community. These applications required testing of the product to confirm its suitability.

A limited quantity of the stabilized methanol from the demonstration unit was made available for
product-use tests. Product-use tests commenced during the first year of demonstration
operations. As noted in Section 7.2, an initial inventory of approximately 12,000 gallons of
stabilized methanol was produced at LPMEOH™ demonstration unit to supply the needs of the
product-use test program. Analysis of the stabilized methanol from tests conducted using a CO-
rich feed gas is shown in Table 7.3-1. Results from two Kingsport tests are quite comparable
with results from a test campaign at the LaPorte AFDU. The difference in the concentrations of
H,0 and higher alcohols of the two Kingsport samples is related to the age or activity of the
catalyst and the amount of CO; in the reactor feed gas.

Table 7.3-1
Stabilized Methanol Composition - CO-rich Feed Gas (H,:CO = 0.7)

Kingsport Kingsport LaPorte AFDU
Sample #1 Sample #2 Sample
Methanol 98.08 99.26 98.40
Ethanol 0.31 0.25 0.60
C3+ 0.40 0.18 0.46
Water 1.22 0.31 0.54
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The status of the seven projects which have been defined within the product-use test program is
reviewed. Two categories of potential applications of stabilized methanol were under
investigation, transportation systems and power generation systems.

7.3.1 Transportation Systems

A total of five vehicles have been tested on fuel blends made from stabilized methanol from the
LPMEOH™ Demonstration Project. These tests, which have been performed at three different
locations, were designed to determine if there are any differences in fuel economy, maintenance,
or exhaust emissions when compared to the performance with fuels made with chemical-grade
methanol.

7.3.1.1 Florida Institute of Technology Bus & Light Vehicles

Three of the vehicles are located at the Florida Institute of Technology, and all were tested on
stabilized methanol from the LPMEOH™ Demonstration Project. A 1988 Chevrolet Corsica
flexible-fuel vehicle (FFV) was driven a total of 4,455 miles on M-85 (85 vol% methanol/15
vol% gasoline) and M-100 (100 vol% methanol) fuel blends. Repairs were of a routine nature
and independent of the type of methanol used or the fuel blend. A total of 32 refuelings were
performed under the sponsorship of the product-use program, with an average fuel economy of
10.88 miles per gallon (mpg). When compared with the EPA rated gasoline mileage of 19.0
mpg, the methanol blends are less efficient on an energy density basis (methanol has a lower
energy content per gallon than gasoline). Additional data on the base gasoline performance is
necessary in order to complete this analysis.

The second vehicle is a 1993 Ford Taurus FFV which was acquired during the project. During
the project, a total of 7,648 miles were accumulated on fuel blends with stabilized methanol
content ranging from M-85 to M-15. Since the car was acquired in July of 1998, the car
operated well; the fuel pump was replaced due to routine wear not related to the use of either
stabilized methanol or chemical-grade methanol fuel blends. The fuel economy ranged from
14.68 mpg on M-85 to 19.81 mpg for M-15. This latter figure matched both the measured fuel
economy with pure gasoline and the EPA rated gasoline mileage.

A bus which had been operated by the Jacksonville Transportation Authority was driven a total
of 937 miles on M-100 during the project. Due to the costs associated with hiring a driver for
this vehicle, no further tests beyond the initial shakedown of the bus were conducted.

7.3.1.2 ARCADIS Geraghty & Miller Flexible Fuel Vehicle

A second set of FFV trials was performed at ARCADIS Geraghty & Miller in a 1996 Ford
Taurus FFV. During sponsorship by the product-use program, the FFV was driven a total of
3,206 miles on a M-85 fuel blended from chemical-grade methanol, and 3,479 miles were

accumulated on M-85 produced from stabilized methanol. The fuel economy of about 16 mpg
was the same for both fuel blends (Table 7.3.1-1).
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Table 7.3.1-1
ARCADIS Geraghty & Miller FFV
Fuel Economy Results

Fuel Economy, mpg
Chemical -Grade M-85 w/ LPMEOH™

M-85 Stabilized Methanol
In-use 16.2 16.4
Emission Test on Dynamometer 16.9 16.3

Results of emissions testing on a dynamometer are presented in Table 7.3.1-2. The FFV
exhibited higher emissions for total hydrocarbons, CO, CO,, and methane for the stabilized
methanol fuel blend; emissions of non-methane hydrocarbons and NOy were higher for the M-85
fuel blended with chemical-grade methanol. For each of these parameters, emissions for both
fuels were within the standards established by the State of California. Emissions of methanol
and formaldehyde were greater for the stabilized methanol blend, and the readings for
formaldehyde were above the California standard for both fuel blends (there is no standard for
methanol emissions). It was concluded that further engine tuning would bring the formaldehyde
emissions into compliance for both fuel blends.

Overall, the FFV operated by ARCADIS Geraghty & Miller exhibited similar performance
characteristics for both fuel economy and emissions when the vehicle was operated on fuel
blends from either stabilized methanol or chemical-grade methanol.

Table 7.3.1-2
ARCADIS Geraghty & Miller FFV
Emissions Results

Constituent Emission Rate, grams/mile California
Chemical -Grade M-85 w/ LPMEOH™ Emission
M-85 Stabilized Methanol Standard, grams/mile
Carbon Dioxide 334 346 No Standard
Carbon Monoxide 0.867 0.923 3.4
Nitrogen Oxides 0.138 0.121 0.4
Total Hydrocarbons 0.093 0.132 No Standard
Methane <0.001 0.011 No Standard
Non-methane Hydrocarbons 0.120 0.118 0.25
Methanol 0.143 0.252 No Standard
Formaldehyde 0.0194 0.0337 0.015
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7.3.1.3 West Virginia University Study of Stabilized Methanol in Transit Bus

West Virginia University (WVU) has developed a transportable laboratory facility which
specializes in the measurement of emissions from heavy-duty vehicles. Figure 7.3.1-1is a
photograph of the laboratory, and one of the pieces of test equipment.

Under this effort, three buses operated on M-100 by Tri-Boro Coach in New York were tested.
The buses were manufactured in 1993 and 1994 by Transit Motor Corp. The Detroit Diesel
6V92 methanol engines in the buses are rated at 253 horsepower. All buses were operated on the
Central Bus District Cycle, which is intended to simulate the use of a transit bus in city service
and is also used to rate the performance of new buses. One bus was also tested using a 5-mile
cycle, which uses five different segments of acceleration, cruise, and deceleration.

The results from the average vehicle emissions for this product-use test are presented in Table
7.3.1-3. On average, emissions of hydrocarbons (primarily unburned methanol and aldehydes)

Figure 7.3.1-1
West Virginia University
Transportable Heavy Duty Emissions Testing Laboratory

WVU mobile emissions
laboratory

I d Bl W

WVU mobile testing equipment
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Table 7.3.1-3
West Virginia University - Tri-Boro Coach
Emissions Results

Constituent Emission Rate, grams/mile
Chemical -Grade M-85 w/ LPMEOH™  New Diesel Engine

M-85 Stabilized Methanol w/ Diesel Fuel
Carbon Dioxide 2,773 2,811 2,611
Carbon Monoxide 10.41 9.60 4.9
Nitrogen Oxides 5.60 5.11 30.1
Total Hydrocarbons 5.39 6.88 0.13
Particulate Matter 0.21 0.24 0.24

and particulate matter were increased slightly when stabilized methanol is used as the fuel. Also
shown for reference are recent test results as reported by the laboratory for a new diesel engine;
methanol fuels offer substantial advantages in lower emissions of NOx with minor changes in
other components when compared with diesel fuel.

7.3.2 Power Generation Systems

As indicated in Figure 7.1-1, one of the primary applications for stabilized methanol derived
from syngas streams rich in CO is in the generation of electric power. The more classical
approach is to generate electricity in a methanol-fired gas turbine at the power plant during
periods of peak power demand. In recent years, changes in the power generation and
transmission industry and technological improvements in smaller turbine and fuel cell systems
have spawned the concept of distributed power. A local power producing system will be able to
provide the electricity for a small number of users (for example, the heating and air conditioning
needs of an office complex or shopping center). Methanol, produced at a centrally located coal-
fired IGCC plant, can be produced at prices which are competitive in these distributed power
applications.

The product-use test program was designed to study the uses of stabilized methanol in a variety
of power generation systems (turbines, fuel cells, generators).

7.3.2.1 West Virginia University Stationary Gas Turbine

This program was designed to compare the emissions and operational aspects of gas turbine
operation on stabilized methanol compared with conventional liquid fuel. At WVU, a research
aircraft was built using a GTC-85-72 gas turbine as the power source. This unit, which is rated
at 235 horsepower in the form of compressor bleed air, was used in this study. Several of the
turbine subsystems (fuel tank and pumps, speed and fuel flow controller, ignition system, bleed
air load controller) had to be modified to accommodate the stabilized methanol fuel.

Testing has shown that the present configuration of the gas turbine does not allow operation on
methanol at startup. Conventional fuel (in the form of Jet A) was used for initial turbine firing,
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and a fuel emulsifier was added to assure a smooth transition from Jet A to stabilized methanol.
At low power loads, flameout occurred during the transition to methanol; this appears to be the
result of the higher heat of vaporization of methanol when compared with Jet A. Two glow
plugs were added to overcome this problem. Initial testing was also performed without any
additives in order to determine if the trace amounts of the inert oil from the LPMEOH™ Process
were sufficient to provide the necessary lubrication for the fuel pump and controller. It was
determined that the mineral oil levels in the stabilized methanol did not adequately lubricate
these systems.

Testing was performed by the WVU Transportable Heavy Duty Emissions Testing Laboratory in
order to compare the emissions generated from Jet A and stabilized methanol fuels. The results
are provided in Figure 7.3.2-1, and demonstrate the capability of stabilized methanol to
significantly reduce the levels of NOy in gas turbine exhausts.

Following this work, a second set of performance tests and emissions measurements were
performed with stabilized methanol and the selected lubricant to determine if any differences
from the earlier testing could be determined. Figure 7.3.2-2 contains a representative set of
results for a 2% mixture of the lubricant in methanol; emissions of NOy were again substantially
lower than for a kerosene fuel, and levels of CO, hydrocarbons, and particulates were also
reduced.

The investigators recommend that additional work could be focused on optimizing the selection
and concentration of the lubricant and solving the problems with operation at low power load.

Figure 7.3.2-1
West Virginia University Stationary Gas Turbine
Emissions Test Results — 1998 Testing

Emissions during fuel type change over from Jet-A to
Methanol at t=5 minutes and back to Jet A at t=11 minutes at
45% power level, August 18, 1998
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Figure 7.3.2-2
West Virginia University Stationary Gas Turbine
Emissions Test Results — 2000 Testing
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7.3.2.2 Aircraft Ground Support Equipment

In preparation for the possibility that combustion sources at U.S. Air Force bases may be
required to reduce their emissions of NOy, the Air Force had become interested in the evaluation
of possible approaches to controlling NOy emissions from aircraft ground support equipment
(AGSE) diesel generators (part of a class of off-road power generation systems). These
generators are very high NOy emitters. It has been determined that the AGSE accounts for
nearly 40 to 60 percent of a typical base’s emissions of NOy and the diesel generator accounts
for 70 to 90 percent of the AGSE emissions. Replacement of these systems is expensive, and
other alternative fuels (such as liquefied or compressed natural gas or liquefied petroleum gas)
are not

feasible. One NOy control approach applicable to these engines is the use of a diesel/water
emulsion fuel in place of standard diesel fuel.

The use of diesel/water emulsions containing nominally 5-percent methanol have been shown to
be effective in achieving nominally 40-percent NOy reductions from some engines. However,
the diesel/water emulsion experience base is quite limited, and the long-term effects of such
emulsions on engine performance were unknown. Thus, there was a need to evaluate the
effectiveness and the long-term performance of this NOy control approach when applied to
AGSE.

ARCADIS Geraghty & Miller developed a project to perform an extended evaluation of the use
of a diesel/water/methanol emulsion, prepared using stabilized methanol from the LPMEOHU
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Demonstration Project as the methanol component. Testing was planned on an Air Force flight
line generator at Tyndall Air Force Base (AFB), Florida. Previous work supported by the Air
Force Green AGSE Program developed an additive package that is effective in both stabilizing a
diesel/water emulsion and preventing engine part corrosion. Two of these generators at Tyndall
AFB were made available to this project. Of these, one was to be operated on the emulsion fuel
during the evaluation, and the other was to be run on a military jet fuel (specification JP-8). JP-8
jet fuel is used in the mobility applications of the generators, and the Air Force has standardized
the use of JP-8 in diesel engines to reduce the need to manage and maintain two fuel types and
fueling systems. Engine performance and emissions testing were planned to be conducted before
the start and after the end of this 6-month period to quantify emission reductions and
performance impacts. Engine inspections were also planned, to address durability and corrosion
issues.

The water-in-fuel (WIF) emulsion containing the stabilized methanol and additives was the
emulsion fuel that was evaluated in these tests. The WIF emulsion was prepared to contain
nominally 30 percent water, 5 percent methanol, and 1 percent additives, with the balance being
JP-8.

When this project was originally planned, substantial support of the effort was offered by several
Air Force and contractor organizations at Tyndall AFB. As the project proceeded, however,
mission priorities of all the Air Force organizations supporting the evaluation changed to the
point that further support of the project was not possible. As a result of these changes, support
for the project could no longer be offered after May of 1999, and the project needed to be
concluded. Up to that point, a series of initial performance and emissions tests had been
completed.

In the initial performance and emissions tests that were completed, engine emissions of O,, CO,
CO,, NOy, and unburned hydrocarbons (UHC) were measured from engines fueled with both
WIF and JP-8. Particulate emissions measurements were also performed using a dilution tunnel
measurement technique. However, the 30-minute sampling time at each test load was not long
enough to allow collecting measurable quantities of particulate on the sampling train filters.

Results of the tests were as follows:

* Asshown in Figure 7.3.2-3, the use of the WIF emulsion reduced engine NOy
emissions by 21 to 57% over the engine load range, with the greater emission
reductions achieved at lower engine loads. The International Organization for
Standardization (ISO) cycle weighted average NOy emissions were reduced 34%
from 1,550 ppm at 15% O, with JP-8 fuel to 1,030 ppm at 15% O, with the
emulsion.

* (O emissions from the engine did not vary significantly with load for the JP-8 fuel,
and were nominally 500 ppm at 15% O,. With the WIF emulsion, CO emissions
were relatively constant at engine loads from full load to 50 percent load, but
increased substantially at lower engine loads.
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Figure 7.3.2-3
Aircraft Ground Support Equipment
Average NO, Emissions Reduction with WIF vs. JP-8
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* Relative CO emissions for the two test fuels showed inconsistent behavior. For one
series of tests, CO emissions with the WIF emulsion were lower than with JP-8 at
engines loads of 50% or greater, but were higher at lower engine loads. ISO-cycle
weighted average emissions for this test series were comparable for both fuels. For a
second test series, CO emissions were substantially higher with the WIF emulsion
than with JP-8 at all engine loads tested.

Stabilized methanol from the LPMEOH™ Demonstration Project was successfully used to
produce the WIF emulsion which was used in this project. Although NOy emissions reduction
with the WIF were impressive, severe problems with cold starting and operation at low ambient
temperatures were experienced. A few approaches to solve these problems were tried during this
abbreviated project, but without success. Until the cold start problem is solved, WIF use in Air
Force applications was not recommended.

7.3.2.3 Low-NOx Stationary Microturbine Combustor

As originally proposed by ARCADIS Geraghty & Miller, the objective of the subject project was
to demonstrate cost-effective volatile organic compound (VOC) destruction by a small gas
turbine operating in a distributed power generation application fired with stabilized methanol
from the LPMEOHL] Demonstration Project. However, after an exhaustive search, no host site
willing to participate in the project was identified.
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At this point, a decision was made to shift the environmental focus of the project. California, as
well as the EPA, regulates NOy as an ozone precursor. As a consequence, California continues
to pursue very aggressive NOy control strategies to facilitate bringing California ozone
nonattainment regions into attainment. Moreover, such strategies will become more
commonplace in the Midwestern and Northeastern states in response to EPA’s decision to
implement a NOy cap and trade program in both the Northeastern states as well as the
Midwestern states that contribute to the ozone nonattainment status of regions of the Northeast
via transported ozone.

Given these mandates, it was clear that any new distributed generation capacity will need to be
low NOy emitting units. In response to this need, Alzeta Corporation, with support from the
California Energy Commission, the DOE’s National Energy Technology Laboratory, and a
number of gas turbine manufacturers, has been developing an advanced low NOy surface
stabilized combustor technology for stationary microturbines in distributed generation
applications. The opportunity arose for the LPMEOH™ Demonstration Project to participate in
this program and extend demonstration testing to stabilized methanol. Accordingly, a decision
was made to redirect the project on VOC control to focus on completing a series of tests using
stabilized methanol as a fuel for a low NOy microturbine combustor targeted for use in a
distributed generation application. In testing performed with natural gas fuel, it was possible to
achieve combustor NOy, CO, and UHC emissions approaching 2 ppm at 15 percent O,. Parallel
testing with stabilized methanol was performed in these tests to evaluate whether comparable
performance could be achieved.

As shown in Figure 7.3.2-4, NOy emissions with stabilized methanol from the LPMEOH™
Demonstration Project were comparable to and, for several conditions, lower than those with
natural gas fuel. Results of the tests showed that combustor NOy emissions could be held below
6 ppm at 15 percent O, over the range of combustor firing rates corresponding to turbine idle to
full load. Emissions as low as 1 ppm at 15 percent O, were achieved at a number of test
conditions, and were 3 ppm at 15 percent O, or lower for all but the highest load tested. The low
NOy emissions were achieved with CO emissions at 20 ppm (at 15 percent O,) or lower. CO
emissions when stabilized methanol was used as fuel were also comparable to those with natural
gas fuel. In fact, CO emissions were 4 ppm at 15 percent O, or lower at all but low load (firing
rate) and high load.

In summary, stabilized methanol from the LPMEOH™ Process would seem to represent an
acceptable liquid fuel for advanced low emission microturbines using the Alzeta combustor
technology, offering emissions performance at or slightly better than the levels achieved with
natural gas fuel.
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Figure 7.3.2-4
Low-NOy Microturbine
NO, Emissions with Stabilized Methanol vs. Natural Gas
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7.3.2.4 University of Florida Fuel Cell

Over the past few years, progress has continued in the development of fuel cells, which can be
used in either transportation or power applications.

While pure gaseous Hj is the ideal fuel for fuel cell power systems, it is also relatively
expensive, difficult to transport, and difficult to store for onboard transportation systems.
Consequently, there has been, and is, considerable interest in utilizing liquid hydrocarbon fuels
for transportation fuel cell applications. For a liquid fuel to be a feasible alternative to Hp, it
must be possible and practical to utilize a fuel processing system to transform the liquid fuel into
a Hp-rich gas. More specifically, the H,-rich gas must be compatible with long-term operation of
the fuel cell system within which it would be utilized, with little or no degradation in
performance. In earlier demonstrations with phosphoric acid fuel cells, chemical-grade methanol
has been used successfully as the source of H,.

Clearly, the implication is that a suitable fuel-fuel processor combination must maintain the
ability to provide almost complete conversion of the liquid fuel feedstock into an acceptable
H,-rich gas over a long period of time and many cycles of operation. “Acceptable” H,-rich gas in
this case means a maximum concentration of H, and virtually zero concentration of contaminants
(primarily unreacted components from the liquid fuel) which would degrade the life and/or
performance of the fuel cell stack. To meet this acceptability requirement, the fuel processor
must also not undergo any significant decrease in its ability to convert the liquid fuel in a
continuing and consistent manner. A prime mechanism for the fuel processor to experience a
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significant decrease in conversion ability would be through a deactivation of the catalyst in a
catalyst-driven processor such as the steam reformer.

Catalyst deactivation can occur for many reasons including excess temperature, rapid
temperature transients, or the introduction of O,. However, with the introduction of a new liquid
fuel such as stabilized methanol, it is obvious that deactivation can occur as a result of one or
more contaminants (such as higher alcohols or the trace quantity of mineral oil from the
LPMEOH™ Process) contained in the liquid fuel. Given the cost of distillation ($0.02 to $0.04
per gallon) of stabilized methanol to chemical-grade purity, a fuel cell test site of this potential
source of H, was sought. The University of Florida had facilities and equipment in the Fuel Cell
Research and Training Laboratory to perform this type of research, as well as two operational
methanol-fueled fuel cell engines. As a result, an agreement was reached for the University of
Florida to undertake the evaluation of the stabilized methanol as a suitable fuel for steam-
reformed methanol/phosphoric acid fuel cell systems.

Since it was obviously important not to damage the operational fuel cell engines, the procedure
was to fabricate small steam reformers using catalyst pellets of the type (copper oxide-zinc
oxide) typically used for methanol steam reformation. The apparatus was designed so as to
allow determination of areas of deactivation if they occurred as a result of the stabilized
methanol fuel. A parallel reformer operating simultaneously with chemical-grade methanol was
used as a control.

Initial results showed very rapid degradation of the catalyst exposed to the stabilized methanol.
Analysis of the results indicated that a likely cause of the deactivation was the presence of high
boiling point components in the stabilized methanol feedstock. A potential scenario for this
deactivation was a probable coating of the catalyst with trace quantities of the mineral oil which
is used as the liquid medium in the LPMEOH™ reactor. Subsequent tests and modifications to
the reformer unit were performed as well as the utilization of a higher temperature reformer
catalyst to avoid rapid catalyst degradation. Higher temperatures did, as expected, result in less
effect due to the mineral oil, but it also resulted in a more unfavorable balance among H,
methane, CO,, and CO in the reformate.

The results to date indicate that for the relatively low-temperature steam reforming of stabilized
methanol, the trace mineral oil in the stabilized methanol would most likely have to be removed
in order for it to be a suitable fuel. On the other hand, the limited higher temperature results
indicate that possibly for auto-thermal reforming and probably for partial oxidation reforming,
the stabilized methanol would be acceptable as a fuel. Methanol from the LPMEOH™ Process
that is purified to chemical-grade specifications should be suitable for use in this application.

7.4 SUMMARY

Methanol from the LPMEOH™ demonstration unit was tested in a variety of chemical and fuel
applications. A test methodology was developed by Eastman to satisfy the criteria for use of
methanol in their chemicals-from-coal complex. Over the entire 69-month operating program
for the LPMEOH™ demonstration unit, over 103.9 million gallons of methanol was produced,

7-15
Kingsport LPMEOH™ CCT Project Final Report: Volume 2 (June 2003)



and Eastman accepted all of the available methanol for use in the production of methyl acetate,
and ultimately cellulose acetate and acetic acid.

Stabilized methanol from the project was also made available to seven test locations to study its
feasibility as feedstock in transportation and power generation applications. Use in these
applications is expected to enhance the flexibility of and revenue from IGCC electric power
plants. In bus and FFV trials, stabilized methanol provided the same environmental benefits as
chemical-grade methanol with no penalty on performance or fuel economy. Tests in a gas
turbine and a diesel generator showed that levels of NOy in the exhaust air can be lowered when
stabilized methanol or methanol emulsions are used instead of conventional oil fuels. As with
the chemical-grade methanol, lubrication additives will likely be required when stabilized
methanol is fed to a gas turbine. Testing of stabilized methanol as the source of H; to a
phosphoric acid fuel cell showed that conventional steam reforming catalysts are not compatible
with the trace mineral oil present in the stabilized methanol; when auto-thermal reforming or
partial oxidation reforming are used, the stabilized methanol would possibly be acceptable as a
fuel. Methanol from the LPMEOH™ Process that is purified to chemical-grade specifications
should be suitable for use in this application.

Product-use testing proved that coal-derived methanol, free of sulfur and other impurities, could
be used one day as a replacement for petroleum in transportation, a peaking fuel in combustion
turbines IGCC power plants, a H, source for small fuel cells, or as a chemical feedstock.
Implementation of the LPMEOH™ technology and the use of stabilized methanol in
transportation and power systems will add significant flexibility and dispatch benefits to IGCC
electric power plants, which traditionally have been viewed as strictly a baseload power
generation technology. Now, central clean coal technology processing plants, making
coproducts of electricity and methanol, can meet the needs of local communities for dispersed
power and transportation fuel. Methanol coproduction studies show that methanol can be
produced at economically competitive levels from an abundant, non-inflationary local fuel
source, such as coal. The coproduced methanol may be an economical H, source for small fuel
cells, as a transportation fuel, and an environmentally advantaged fuel for dispersed electric
power.
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8.0 LIQUID PHASE DIMETHYL ETHER (LPDME™) DESIGN VERIFICATION
TESTING (DVT)

8.1 INTRODUCTION

The Statement of Work from the Cooperative Agreement defined a Secondary Objective for the
LPMEOH™ Demonstration Project regarding the demonstration of Air Products’ Liquid Phase
Dimethyl Ether (LPDME™) Process:

"Subject to Design Verification Testing (DVT), the Partnership proposes to enhance the Project by
including the demonstration of the slurry reactor's capability to produce DME as a mixed co-product with
methanol. The production of DME from synthesis gas is a natural extension of the LPMEOH™ Process
in that three reactions occur concurrently in a single liquid phase reactor, methanol synthesis, methanol
dehydration and water-gas shift. This process enhancement can significantly improve the overall
conversion of coal derived synthesis gas to a storable blend of methanol and DME...

“The enhanced (DME production) demonstration is complementary to ongoing studies being sponsored
by DOE's Liquid Fuels Program... the enhancement will expand DOE’s liquid fuels technology data base
and will demonstrate the versatility of liquid phase synthesis.

“DVT is required to address issues such as catalyst activity and stability and to provide data for
engineering design and demonstration decision making. The DVT plan will be coordinated with and
utilize the resources of the DOE’s Liquid Fuels Program as technology experts. The essential steps
required for Project decision making regarding the methanol/DME co-product enhancement are:

“DVT, including laboratory R&D to develop engineering data and to verify the market through
engine tests and through market and economic study. (Phase I, Task 5).

“DVT, including Process Development Unit Verification Testing utilizing the LaPorte AFDU for
proof of concept tests. (Phase III, Task 6).

“Final decision making to implement the full-scale methanol/DME co-product demonstration.
(Phase III, Task 2.2).

“At the conclusion of each of the DVT steps, a joint Partnership/DOE decision will be made regarding
continuation of methanol/DME demonstration."

The LPDME™ Process uses a physical mixture of a commercial methanol catalyst and a
commercial dehydration catalyst in a single slurry reactor to coproduce DME with methanol.
This process provides high syngas conversion, efficient heat transfer, and directly converts a
variety of feed gas compositions. There are three simultaneous reactions in this system, namely,

Methanol synthesis: CO +2H; < CH;0H (1)
Water gas shift: CO+H,0O = CO, +H, 2)
Methanol dehydration: 2CH;0H < CH3;0CH; + H,O 3)

The methanol synthesis catalyst promotes Reactions 1 and 2, and the dehydration catalyst
promotes Reaction 3. Both catalysts are micron-sized powders suspended in an inert
hydrocarbon liquid, usually a mineral oil. The mineral oil acts as a temperature moderator and a
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heat removal medium, transferring the heat of reaction from the catalyst surface via the liquid
slurry to boiling water in an internal tubular heat exchanger. As a result of this capability to
remove heat and maintain a constant, highly uniform temperature through the entire length of the
reactor, the slurry reactor can manage the high syngas conversion per pass that can be achieved
in the LPDME™ Process.

These capabilities make the LPDME™ Process a potentially lower-cost conversion route to
DME, especially when DME coproduction is added to a coal-based IGCC power plant. In this
application, the overall reaction of syngas to DME is:

DME from CO-rich syngas: 3CO + 3H; < CH3;OCHj; + CO, 4)

This is the "once-through" CO-rich syngas concept for the LPDME™ Process utilizing a single
slurry reactor. Conversion per pass, with CO-rich syngas, can be higher than for the
LPMEOH™ Process. Methanol may also be produced, as a mixed coproduct with the DME, and
can easily be separated and recovered. The separation of DME from CO, will be necessary for
certain market applications.

8.2 DME MARKET STUDIES

A topical report® provided information on the status of the current market for DME and an
outlook on potential market developments through 2006. Over 50% of the demand for DME
worldwide (currently between 100,000 and 150,000 metric tons per year) is for use as a
projectile agent. DME is also being used as a methylating agent, and as a cleaning material for
laboratory systems and some high precision, high value added applications, such as in
electronics.

DME has potential applications as a chemical building block. In addition, since the physical
properties of DME are similar to those of liquefied petroleum gas (LPG), it has been speculated
that DME could be used in large scale power production, in home heating, in replacement of
LPG for automobiles, and as a diesel fuel substitute or combustion supplement. In these
applications, the specification for the purity of DME has been reported to be lower than the 99
wt% requirement for current uses, which may provide an opportunity for savings in capital and
operating costs for product distillation. If these markets are developed, production capacity for
DME will need to increase by an order of magnitude over current levels of about 143,000 metric
tons per year. Projects to meet this future market are under development, including two large
natural gas-based opportunities serving markets in India and Japan and a coal-based opportunity
in China.

8.3 DVT ECOMONIC STUDIES

The economics studies, for once-through coproduction (with an IGCC power plant, for example)
on syngas rich in carbon oxides, show that the LPDME™ Process will have an economic
advantage greater than the LPMEOH™ Process. A once-through LPDME™ reactor is able to
convert greater than 50% of such a syngas, whereas a once-through LPMEOH™ reactor can
convert only about 30%. The economics, of course, depend upon the end-use (purity) of the
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DME and upon the gasification plant's coproduct mix (amount of power, methanol, DME, etc.).
The same liquid phase reactor design options to increase syngas conversion, such as feed gas
compression and/or CO-rich gas recycle; are also applicable for the LPDME™ Process. So, the
LPDME™ technology has the potential to improve on the $0.05 to $0.10 per gallon (methanol
equivalent) advantage over the LPMEOH™ Process for the coproduction of DME to serve local
markets.

As with the LPMEOH™ Process, gas-phase process technology must be considered as the
economic competitor. The gas-phase DME process® must run with H,-rich syngas. In the
IGCC coproduction flow sheet (shown in Figure 7.1-1), gas-phase technology is at an economic
disadvantage, since separate shift and CO, removal are required. As is the case for methanol,
inexpensive remote natural gas would therefore be the economic plant site choice for gas-phase
technology. A comparison of coproduction of DME in an IGCC facility using the LPDME™
Process compared with DME imported from remote gas facilities, shows an advantage of 20-
30% for locally produced DME relative to imported DME. The transportation cost to import
DME is much higher than for methanol, and the LPDME™ coproduction advantage is even
greater than that for the LPMEOH™ Process (vs. methanol import). Dehydration of imported
methanol to make DME is not competitive. Therefore, for DME in local markets, coproduction
using the LPDME™ Process should have a clear economic advantage over imported DME.

With H,-rich syngas, the LPDME™ Process loses its (once-through, high conversion per pass)
economic advantage. The overall reaction, with (> 2:1) H,-rich syngas is:

DME from Hj-rich syngas: 2CO + 4H, < CH3;OCH; + H,O (5)

Since water inhibits the methanol dehydration reaction, the slurry reactor must be staged, with
water removal between stages. Staging could be by high ratio gas recycle, and/or with multiple
reactors; but the once-through simplicity is lost. Therefore, it is unlikely that the LPDME™
Process would be developed for use in Hp-rich syngas applications.

A cost estimate of commercial-scale LPDME™ plants has been performed. This work has
helped quantify the targets for the laboratory research and development program (summarized
below). From these studies, a commercially successful LPDME™ system was defined for a
Texaco-type syngas (35 vol% Ha, 51 vol% CO, 13 vol% CO,) available at 500 psig. At a reactor
operating pressure of 950 psig and a space velocity of 4,000 liters/hr-kg catalyst, the LPDME™
catalyst system must have a methanol equivalent productivity of 14 mol/kg catalyst-hr after 6
months of operation, producing at least 75% (by heating value) DME and 25% methanol.

8.4 DVT CATALYST STUDIES

A research and development program was initiated by Air Products in 1994, with DOE’s
sponsorship under the Liquid Fuels Program, to develop a catalyst system for the LPDME™
Process that met the economic targets. This work resulted in an invention of aluminum
phosphate as the dehydration catalyst. The aluminum phosphate provided an active and stable
catalyst system. The system met the program targets under standard test process conditions of an
initial methanol equivalent productivity of 28 gmole per kg catalyst - hr, a CO,-free, carbon
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selectivity of 80% to DME, and stability of both catalysts equivalent to that of the methanol
catalyst in the absence of the aluminum phosphate. Because the aluminum phosphate catalyst
was not commercially available, a scaleup project was initiated with a commercial catalyst
vendor to prepare a total of 800 pounds of aluminum phosphate to provide for two reactor
charges and some additional material for testing.” Eight 160 pound pilot batches of uncalcined
catalyst were prepared. The reproducibility of the aluminum to phosphate (Al/P) ratio, an
important physical property of the catalyst, from batch to batch was poor. Of these eight lots,
two were qualified as yielding acceptable performance under the proposed LaPorte AFDU trial
life test conditions. One of the batches was tested under conditions which allow direct
comparison to the lab benchmark aluminum phosphate. This batch gave faster deactivation of
the methanol catalyst than did the lab material, showing it to be of inferior quality. Two
additional batches were prepared at half-dilution to alleviate any mixing problems which might
have caused the poor reproducibility in the original eight batches. However, the Al/P ratio of
both of these batches was high. One was tested, and shown to give unacceptable performance.
All scaleup work on aluminum phosphate was suspended in November of 1998, as a
commercially-available catalyst discussed below was identified which performed equivalently.

The deactivation rates of the methanol and the dehydration catalyst were correlated to reaction
conditions. The correlations suggested a dependence of the deactivation rates on reaction
conditions. The trends suggested by the correlations were confirmed by additional experiments.
Better stability was obtained using the aluminum phosphate catalyst system by operating at
favorable process conditions. The same improvement was also demonstrated with the gamma
alumina catalyst system. However, there was a 10-20% trade-off in the productivity when
shifting from the optimal conditions to the stable conditions for both the catalyst systems. As the
gamma alumina was off-the-shelf commercial material, it was chosen for the LaPorte AFDU
test. A methanol catalyst to gamma alumina ratio of 95:5 by weight was found to be optimum
for catalyst stability.

8.5 1999 LPDME™ PROCESS DESIGN VERIFICATION TEST RUN

A demonstration of the production of DME by the LPDME™ Process was successfully
completed at the LaPorte AFDU in October-November of 1999. A photograph of the LaPorte
AFDU is provided in Figure 8.5-1. The demonstration was conducted at a pilot scale of 10 sT/D
to evaluate the commercial viability of the LPDME™ Process. Based upon the improvement in
the life of the catalyst system at the laboratory scale, the participants in the LPMEOH™
Demonstration Project agreed that a trial at the LaPorte AFDU was the appropriate step to
demonstrate these improvements. This run was co-funded by the LPMEOH™ Demonstration
Project and the DOE’s Liquid Fuels program. The objectives of the run were to demonstrate the
operation of the LPDME™ Process with improved catalyst life at a 10 sT/D scale, using
commercially produced catalysts, obtain information to correlate the scaleup of catalyst aging
from autoclave to bubble column, conduct process variable testing, and perform experiments to
better understand the reactor fluid dynamics. A topical report'® was written detailing the testing
at the LaPorte AFDU.
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Figure 8.5-1
LaPorte Alternative Fuels Development Unit (AFDU)
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The methanol catalyst was successfully activated at the beginning of operations with dilute H»,
resulting in an expected H, uptake. The reduction was conducted with 3 vol% H in N, at 67
psig reactor pressure. The heat-up proceeded from 200 to 464°F, as planned. The reduction
appeared normal, and a cumulative uptake very close to the theoretical maximum value of 2.68
SCF Hy/1b oxide was obtained. The reduction was essentially complete at 390°F or 17 hours
onstream. Nuclear Density Gauge measurements indicated an average gas holdup of 36.8 vol%,
with a catalyst concentration of 40.1 wt% at 392°F during the reduction. The catalysts appeared
to have good initial activity, with DME and methanol productivity slightly exceeding
expectations. This confirmed that the catalyst activation was proper. The initial DME
production rate was 5.1 sT/D compared to an expectation of 4.8 sT/D, while the methanol
production rate was 3.6 sT/D vs 3.5 sT/D expected.

The LaPorte AFDU was operated for 25 days to compare catalyst aging in a pilot-scale slurry
bubble column reactor with that in a laboratory autoclave. The proportion of two catalysts
corresponded to a 95:5 methanol to dehydration catalyst ratio by weight. The methanol and
dehydration catalyst activities, expressed as the ratio of the rate constant at any point in time to
the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), are
plotted in Figure 8.5-2. These normalized rate constants were estimated based on a reaction
model developed from laboratory data. After the expected initial aging, the catalysts appeared to
be stabilizing, but there was significant scatter in the data. Gas chromatographic as well as
sampling problems were discovered with methanol analysis that required use of liquid balance
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Figure 8.5-2
1999 LPDME™ Operating Run at LaPorte AFDU — Estimated Catalyst Activity
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for calculations, contributing to the scatter. The problems were corrected in two days. The
initial deactivation rate appeared high: 0.08% per hour (2% per day) for methanol catalyst with
a

0.05% per hour standard error and 0.03% per hour (0.6% per day) for dehydration catalyst with a
0.009% per hour standard error. It was decided to extend the aging test to get a better estimate
on catalyst deactivation rate, which was the main objective.

The LaPorte AFDU data appeared to follow the autoclave trends, with somewhat higher
conversions than the autoclave throughout the test period. The methanol productivity level
remained relatively constant, while the DME productivity showed a slight decline. The DME
and methanol production rates through the run are shown in Figure 8.5-3. The DME production
rate declined from 5.1 sT/D to 4.1 sT/D in 25 days onstream, while methanol production showed
a scatter within the 3.1 to 3.8 sT/D range through the run. The scatter in data decreased
significantly after the gas chromatograph and sampling problems were resolved (350 hours
onstream). The performance also met the productivity and selectivity targets. The initial
methanol equivalent productivity exceeded the target of 28 gmole/hr-kg catalyst, and the DME
selectivity was at the target of 65% on a carbon basis. The reactor operated in a
hydrodynamically stable manner, with uniform temperature profile and gas holdups. Differential
pressure measurements indicated about 42 vol% gas holdup and 36 wt% catalyst concentration.
Gas-, liquid-, and solid-phase mixing was studied using radioactive tracer injections.
Washington University in St. Louis analyzed the tracer data as part of a DOE program on
hydrodynamics of slurry bubble column reactors.
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Figure 8.5-3

1999 LPDME™ Operating Run at LaPorte AFDU — Production Results
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The equipment for this test was operated for the first time following a 4-year hiatus; the
operations were smooth. The initial startup was very quick, with the baseline condition reached
in 12 hours after the introduction of syngas. A re-start after a syngas outage took only 4 hours.
The speed of the startup and re-start demonstrates the ease and flexibility of the slurry
technology in response to changes.

The major accomplishments of this run are summarized below:

Kingsport LPMEOH™ CCT Project

Commercial viability of the LPDME™ Process was successfully evaluated on a 10 sT/D
scale, using commercially produced catalysts. The LaPorte AFDU was operated for 25 days
to compare catalyst aging in a pilot scale slurry bubble column with that in a laboratory
autoclave. The catalyst life study was extended in favor of a planned process variable study
to obtain additional data on catalyst aging. Hydrodynamic information was obtained at the
baseline conditions by conducting a detailed survey of the reactor with radioactive tracer
injections.

The deactivation rate for both the catalysts was calculated to be 0.7% per day. This result
was lower than the 1.2% per day which had been calculated for both the methanol synthesis
and dehydration catalysts during experiments in the autoclave. The rate of deactivation was
slightly higher than 0.5% per day rate which was achieved for the LPMEOH™ Process after
3 weeks of operation at the LaPorte AFDU in 1988/89. The methanol productivity remained
relatively constant throughout the test period, while the DME productivity showed a slight
decline. These trends were consistent with observations from the laboratory. The standard
error for the methanol catalyst deactivation rate was high (0.25% per day) due to initial
scatter in the data. The scatter decreased significantly after problems in the sampling and
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analytical system were discovered and resolved at 350 hours on stream. The dehydration
catalyst activity data have better statistics, with a standard error of 0.06% per day.

o The 1999 design verification test of the LPDME™ Process at the LaPorte AFDU represented
a significant step forward in the development of the technology. The 0.7% per day rate of
catalyst deactivation which was achieved during this campaign is a large improvement over
the 4% per day rate of deactivation which was calculated from autoclave studies prior to the
initial test of the LPDME™ Process at the LaPorte AFDU in 1991.

8.6 DME DVT CONCLUSIONS

During a Project Review Meeting on 12-13 January 2000, the preliminary results from the
LPDME™ DVT were presented. A table which compared the performance of the LPDME™
catalyst system during the DVT with results from the recent work in the laboratory autoclave and
the economic targets for the LPDME™ Process was presented (Table 8.6-1). The results from
the laboratory work had indicated that the targets for catalyst productivity and life can be met at
lower selectivity to DME. The results from the DVT were applied to a cost estimate for a
commercial-scale LPDME™ plant (Figure 8.6-1). The case that was considered was the retrofit
of an existing Texaco gasifier in China which is currently used in the production of ammonia.
The results of this initial work were that, for this syngas (35 vol% Haz, 51 vol% CO, 13 vol%
CO,) available at 500 psig, the DME costs are competitive with LPG in China ($7 to $8 per
MMBtu). The cost of syngas assumes constant utilization for each plant size, and economies of
scale are indicated by changes in the conversion and separation costs. The target DME cost can
likely be achieved at larger plant sizes by extrapolating the costs to the 1,100 sT/D production
rates. The sensitivity of the cost of production of DME to the life of the LPDME™ catalyst
system was shown for the results from LaPorte (0.7% per day deactivation), as well as the
impact of changes to the value for catalyst life on the process economics.

As stated in the 30 July 1997 letter which transmitted Air Products’ recommendation to proceed
with LPDME™ DVT, the basis for commercialization of the technology must come from:

1) the results from testing of the LPDME™ catalyst system at the LaPorte AFDU; and
2) the reactor performance (methanol catalyst activity and life, hydrodynamics, and heat
transfer) from the LPMEOH™ demonstration unit.

After discussing the results from the LPDME™ DVT activities and the ongoing performance
results from Kingsport, the meeting participants agreed that the available resources should be
directed toward improving the catalyst performance for the LPMEOH™ Process during the
remaining time within the operating program. The results of this economic analysis were
forwarded to the DOE’s Liquid Fuels Program in order to provide direction to the ongoing
catalyst development efforts.
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9.0 ECONOMICS

9.1 INTRODUCTION

A topical report on the economics of coproduction of methanol in an IGCC power plant was
published as part of the LPMEOH™ Demonstration Project.” This study was used as the basis
for the capital and operating costs for the LPMEOH™ Process that are published within this
report. The assumptions for key economic parameters are provided:

Capital costs for equipment, valves, and instrumentation are calculated using costs from the 260
sT/D LPMEOH™ demonstration unit as the basis (calendar year 1995). Different multipliers are
used to scale the costs. For example, costs associated with methanol distillation to the desired
grade of methanol might scale directly with methanol production rates, while some of the costs
within the LPMEOH™ reactor system may depend upon the volumetric gas flowrate.

Construction costs assume the same schedule (15 months) and site preparation as the
LPMEOH™ Demonstration Unit.

Freight and Miscellaneous refer to project execution costs, again based upon the costs from the
LPMEOH™ Demonstration Project.

Air Products Process Studies refer to initial process evaluations which need to be performed in
order to optimize the process cycle selected for a particular IGCC application. For example,
optimization of feed and recycle compression and an evaluation of the need for water injection
are performed during these studies.

Air Products Technical Package refers to the final process design package for a site-specific
application. This includes all heat and material balances, detailed equipment specifications for
the LPMEOH™ reactor, and process specifications for other equipment items.

Project Engineering refers to the overall management of the engineering, design, and
construction work, based upon the costs from the LPMEOH™ Demonstration Project.

Design Engineering refers to the detailed design work (civil, mechanical, instrument and
electrical), again based upon the costs from the LPMEOH™ Demonstration Project.

Field Engineering refers to all field engineering services, including construction management at
the site. These costs are again based upon the costs from the LPMEOH™ Demonstration
Project.

Travel and Living costs are included as a line item.

Reserve is provided as a line item, but is not included in these evaluations.

License Fee is provided as a line item, but is not included in these evaluations.
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Once these items are computed, an allowance for Owner’s Cost (25% of the equipment cost for
the evaluated system) is provided. This is a nominal cost of project execution which includes
costs for:

a) Initial charge of catalyst

b) Initial supply of chemicals and lubricants
c) Any applicable taxes and insurance

d) Cost of land

e) Legal and other overhead costs

Costs associated with Methanol Storage and CO, Removal (if required) are separated from other
equipment items, since the costs are site-specific and are highlighted in this manner to provide a
potential customer with the opportunity to optimize the required storage.

The sum of these items is the Capital Cost for the LPMEOH™ Facility. The costs are also
tabulated by process area (excluding Owner’s Cost, Methanol Storage Cost, and CO, Removal
Costs) to provide information on the relative costs of the different process steps, including all
valves, instruments, and associated construction costs.

A calculation of the Plot Area Required, based upon the layout from the LPMEOH™
demonstration unit, is also given.

Operating costs are evaluated as annual costs ($/Year) and as the cost per gallon of methanol.
The annual cost is computed from the cost per unit time and the annual capacity factor. The final
cost of methanol is computed as follows:

$/Gallon Methanol = Annual Costs ($/Year)
365 * LF * 303 * X

where:

LF = Annual Capacity Factor
X = Methanol Production Rate, short Tons per Day

The conversion factor 303 gallons per short ton of methanol is used in this equation.
The following is a summary of the components of the Operating Costs:

Syngas refers to the value (lower heating value [LHV] basis) of the syngas produced in the
IGCC facility. When a specific application is defined, the cost ($ per MMBtu) can be specified.

Unreacted Gas refers to the value (LHV basis) of the syngas returned from the LPMEOH™ plant
to the IGCC facility. When a specific application is defined, the cost ($ per MMBtu) can be
specified.
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Power used by the LPMEOH™ Process is evaluated at $0.04/kWh, which is assumed to be the
electricity costs from the adjacent IGCC facility. Categories of power consumers (compressors,
pumps, etc.) are tabulated separately.

Steam is a credit from the LPMEOH™ Plant; a typical value of $4.00/1,000 pounds of steam
production (including the cost for boiler feed water and the credit for condensate return) is used
for the 200 psig steam produced by the LPMEOH™ Reactor.

Cooling Water is evaluated at a 20°F temperature rise across all cooling water heat exchangers.
A cost of $0.12/1,000 gallons of cooling water is used in this study.

Other Miscellaneous Utilities (such as instrument air and N) are calculated based upon the costs
from the LPMEOH™ Demonstration Project.

Catalyst, Chemicals and Lubes refers to the estimated costs for the methanol synthesis catalyst,
process mineral oil, and other lubricants. These values are based upon the costs from the
LPMEOH™ Demonstration Project.

Zinc Oxide is used as the absorbent for the H,S which is present with the fresh feed syngas or is
produced by the COS (carbonyl sulfide) Hydrolysis catalyst within the LPMEOH™ Process.
Each of these consumables is evaluated based upon present costs for each material.

Operating Labor is calculated from the original budgetary forecast for the LPMEOH™
Demonstration Project (which was met during the operating program).

Maintenance costs are evaluated based upon an annual budget of 2% of the total capital cost for
the evaluated LPMEOH™ Facility.

Property Taxes and Insurance are estimated at an annual budget of 1.5% of the total capital cost
for the evaluated LPMEOH™ Facility.

Overhead is computed at a nominal rate of 15% of the operating costs (not including the costs
for syngas or the credit for the unreacted gas).

Recovery of Capital Cost, Depreciation, and ROI (Return on Investment) are computed based
upon a 15 year depreciation and a ROI of about 14%, which results in a total charge of 20% of
the investment per year.

9.2 ESTIMATED PROCESS CAPITAL COSTS

Table 9.2-1 provides a summary of the estimated capital costs for a 500 sT/D LPMEOH™ plant
that coproduces a fuel-grade methanol (a minimum of 97 wt% methanol, a maximum of 1 wt%
water, 1.5 wt% higher alcohols, and 0.5 wt% mineral oil from the LPMEOH™ Process) from
CO-rich syngas (H,:CO = 0.68) in a coal-based IGCC power plant. These costs were originally
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Table 9.2-1
Estimated Facility Investment Summary for Once-Through 500 sT/D LPMEOH™ Plant

INVESTMENT BREAKDOWN MM-$
COMPRESSION $0.00
LPMEOH™ EQUIPMENT $5.09
VALVES & INSTRUMENTS $3.35
CONSTRUCTION $10.40
FREIGHT & MISCELLANEOUS $0.37
AIR PRODUCTS PROCESS STUDIES $0.22
AIR PRODUCTS TECHNICAL PACKAGE $0.97
PROJECT ENGINEERING $1.63
DESIGN ENGINEERING $3.88
FIELD ENGINEERING $1.15
TRAVEL & LIVING $0.29
RESERVE $0.00
LICENSE FEE not incl
Sub-total Turnkey Plant $27.35

OWNER'S COST 25% of Equipment $1.27
METHANOL STORAGE 30 days 5.0 MM Gallons $2.46
CO2 REMOVAL $0.00
TOTAL CAPITAL $31.08

PLOT AREA REQUIRED, ACRES
LPMEOH™ =0.11 Storage = 5.13 TOTAL 5.24

INVESTMENT BY AREA

AREA INVESTMENT DESIGN BASIS MM-$
A REACTOR LOOP & CATALYST REDUCTION 500 sT/D $18.60
B FEED COMPRESSION 0 BHP $0.00
C RECYCLE COMPRESSION 0 BHP $0.00
D FRONT-END GAS CLEANUP 14552 LB-MOL/HR $3.00
E COMMON EQUIPMENT 500 sT/D $1.85
F SATURATOR $0.00
G DISTILLATION 500 sT/D $2.71
RESERVE 00 % $0.00
AIR PRODUCTS PROCESS STUDIES $0.22
AIR PRODUCTS TECHNICAL PACKAGE $0.97
LICENSE FEE not incl
Sub-total Turnkey Plant $27.35

Notes: 1) Syngas (H,:CO = 0.68) containing 5 ppmv COS is available at 1,000 psig.
2) Equipment from LPMEOH™ demonstration unit, escalated to 20028, was used as basis.

published in the topical report on economics (referenced above). The capital cost of the
LPMEOH™ demonstration unit, excluding the equipment items that were not used during the
demonstration period (as described in Section 3.1), was used as a basis.
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9.3 PROJECTED OPERATING AND MAINTANANCE COSTS

Table 9.3-1 provides a summary of the projected operating and maintenance costs for a 500 sT/D
LPMEOH™ plant in the IGCC plant location. The operating and maintenance costs for the
distillation system can be separated from the other conversion costs to yield a methanol
conversion cost (in this case, a methanol conversion cost of $0.155 per gallon, including capital
recovery, was calculated); this terminology will be used in developing the impact of changes in
operating parameters on costs in Section 9.5.

Table 9.3-1
Projected Operating and Maintenance Costs for Once-Through 500 sT/D LPMEOH™
Plant
MeOH Production 500 sT/D
Annual Load Factor 90 %
Distillation to Fuel Grade Methanol
Syngas H,:CO = 0.68
M-$/Yr $/Gal
Syngas (LHV) 1434 MMBTU/ht $0.00 /MMBTU $0 $0.000
Unreacted Gas (LHV) (995) MMBTU/hi $0.00 /MMBTU $0 $0.000
Power
Feed Compressor 0 kw $0.04 /kWh $0 $0.000
Recycle Compressor 0 kw $0.04 /kWh $0 $0.000
Pumps, Heaters, etc. 382 kW $0.04 /kWh $121 $0.002
Distillation 43 kW $0.04 /kWh $13 $0.000
CO2 Removal 0 kW $0.04 /kWh $0 $0.000
LP Steam, 100 psig 3515 Ib/hr $3.00 /M-Ib $83 $0.002
MP Steam, 200 psig (49300) Ib/hr $4.00 /M-Ib ($1,555) ($0.031)
C Water, 200F Delta T 652 gpm $0.12 /M-gal $37 $0.001
Misc Utilities $240 $0.005
Catalyst, Chemicals & Lubes $989 $0.020
Sulfur Removal, Zinc Oxide 104 M-lb/yr $3.58 /Ib $337 $0.007
COS Hydrolysis Catalyst 6 M-Ib/yr $3.63 /b $18 $0.000
Operating Labor $733 $0.015
Maintenance 2% of Investment/yr $622 $0.012
Sub-Total $1,638 $0.033
Property Taxes, Insurance 1.5% of Investment/yr $466 $0.009
Overhead 15% of Oper Costs (Less Feed) $252 $0.005
Capital Costs, Depr & ROI 20% of Investment/yr $6,212 $0.125
Methanol Conversion Cost, Total $8,569 $0.172

Notes: 1) Syngas (H,:CO = 0.68) containing 5 ppmv COS is available at 1,000 psig.
2) Costs from LPMEOH™ demonstration unit, escalated to 20028, were used as basis.
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9.4 SUMMARY OF PERFORMANCE AND ECONOMICS

The capital cost summary for a 500 sT/D LPMEOH™ plant (Table 9.2-1) was developed based
upon the design of and operating results from the LPMEOH™ demonstration unit. The scaleup
of the size of the LPMEOH™ reactor (7.5 internal diameter, 260 sT/D design, greater than 300
sT/D demonstrated performance) can be managed; a topical report was issued on the
construction of the reactor at the LPMEOH™ demonstration unit and the lessons learned that
can be applied to the fabrication of larger diameter vessels."”

The operating cost summary (Table 9.3-1) was developed using the results from the 69-month
operating program at the LPMEOH™ demonstration unit as the basis. Given the excellent on-
stream performance (availability of 97.5%), a highly reliable system can be designed for future
plants. In particular, the elimination of the slurry return pumps within the LPMEOH™ Process
(refer to Section 3.1-1) was a key factor in achieving high on-stream time and lower maintenance
costs. The basis for catalyst consumption is a catalyst deactivation rate of 0.4% per day, which
was readily achieved during Kingsport Catalyst Campaign 4 (refer to Section 5.1.4). All other
parameters (such as steam production from the LPMEOH™ reactor and steam consumption for
distillation) were demonstrated during the operating phase of the LPMEOH™ Demonstration
Project.

9.5 EFFECT OF VARIABLES ON ECONOMICS

Cases were developed to illustrate the impact of key operating variables on the methanol
conversion cost (as defined in Section 9.3). The space velocity in the LPMEOH™ reactor was
selected based upon an analysis contained in the topical report on the economics of coproduction
of methanol with electric power. To illustrate the sensitivity, two syngas supply pressures (500
psig and 1,000 psig) were used.

9.5.1 Plant Size

Figure 9.5-1 shows the impact of methanol plant size on the methanol conversion cost for coal-
derived syngas available at 1,000 psig. The once-through process yields the lowest conversion
cost; the case at 500 sT/D was used as the basis for the capital and operating costs that were
provided in Sections 9.2 and 9.3.
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Figure 9.5-1
Effect of Methanol Plant Size on Methanol Conversion Cost
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9.5.2 Sulfur Content

In this analysis, the fresh syngas was assumed to contain 5 ppmv of COS. To remove this
catalyst poison the COS is first hydrolyzed over a metal oxide catalyst and then the H,S
produced is removed with a zinc oxide bed. COS was selected to represent sulfur species in the
syngas instead of H,S because of the higher capital cost associated with the hydrolysis step
(operating costs for absorption of H,S and COS after hydrolysis are the same on a sulfur weight
basis). Figure 9.5-2 shows the effect of an increase to 20 ppmv of COS in the syngas feed on the
methanol conversion cost at 1,000 psig syngas supply pressure. There is an increase of $0.05 to
$0.08/gal in the methanol conversion cost at lower syngas conversion, as a large amount of gas
must be treated. As the amount of conversion is increased (independent of the methanol
conversion technology), the effect on cost becomes more modest.
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Figure 9.5-2
Effect of Syngas Conversion on Methanol Conversion Cost
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9.5.3 Inert Content

In this analysis, the fresh syngas was assumed to contain 1 vol% inerts. Increased levels of
inerts can result from such parameters as the O purity from the air separation unit feeding the
coal gasifier. The greater the syngas conversion, the greater becomes the cost penalty of inert
build up in the synthesis loop. Figure 9.5-3 shows the effect of an increase to 10% inerts in the
feed syngas on the methanol conversion cost at 500 psig syngas supply pressure. For the once-
through case (Case 5-A) there is a $0.044/gal increase in cost along with a small reduction in
conversion. With a 1:1 recycle at 1,250 psig (Case 5-H), the cost increase becomes less,
$0.015/gal. For the gas-phase process, the effect is much greater. In the case shown the inerts in
the synthesis loop were limited to 35% to limit the impact on conversion due to lower partial
pressure of reactants; this increases the methanol conversion cost by $0.027/gal and greatly
reduced the syngas conversion to 77%.
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Figure 9.5-3
Effect of Inerts Concentration on Methanol Conversion Cost
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9.5.4 Capacity Factor

The depreciation and return on investment have a significant impact on the methanol conversion
cost. These are magnified by the capacity factor, as this term is inversely related to the unit cost
of methanol ($ per gallon). All of the figures and tables presented to this point in this Section
have used a capacity factor of 90%. An analysis was performed to determine the change in
methanol conversion cost when the capacity factor is lowered to 70%. This is more
representative of the coproduction of methanol with electric power in an IGCC load-following
application. When syngas is available at 500 psig, the effect of lowering the capacity factor from
90% to 70% is to increase the methanol conversion cost by $0.05 to $0.06 per gallon of
methanol. When the feed syngas is available at 1,000 psig, the methanol conversion cost
increases by $0.04 to $0.05 per gallon of methanol when the capacity factor is lowered from
90% to 70%.
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10.0 COMMERCIALIZATION POTENTIAL AND PLANS

10.1 MARKET ANALYSIS

10.1.1 Applicability of the Technology

The LPMEOH™ Process is a very effective technology for converting a portion of the H, and
CO in an IGCC electric power plant's coal-derived syngas to methanol. The process is very
flexible in being able to process many variations in syngas composition. The LPMEOH™
Process can be used with an IGCC power plant to provide the once-through methanol production
as depicted in Figure 7.1-1. The process can be designed to operate in a continuous, baseload
manner, converting syngas from oversized gasifiers or from a spare gasifier. The process can
also be designed to operate only during periods of off-peak electric power demand to consume a
portion of the excess syngas and allow the electricity output from the combined-cycle power unit
to be reduced. In this latter circumstance, the gasifiers continue to operate at full baseload
capacity, so the IGCC facility's major capital asset is fully utilized. In either baseload or cycling
operation, partial conversion of between 20% and 40% of the volume of H, and CO in the IGCC
power plant's syngas is optimal on an economic basis, and conversion of up to 50% is feasible.

A simplified process flow diagram for the LPMEOH™ Process design options is shown in
Figure 10.1-1. This shows several once-through LPMEOH™ Process design options, as
described more fully in the Public Design Report (Final Report - Volume 1) and in a topical
report on the economics of methanol coproduction as an add-on to an IGCC power plant.

In its simplest configuration, part or all of the CO-rich syngas at its maximum available pressure
from the IGCC power plant (Stream 1) is passed once, without recycle, through the LPMEOH™
reactor. The unreacted syngas (Stream 3) is returned to the IGCC power plant's combustion
turbines.

If greater amounts of syngas conversion are required, different design options are available:

a) Use of Gas Recycle;

b) Once-Through, with Feed Gas Compression;

c) Once-Through, with Water Addition;

d) Once-Through, with Water Addition and CO, Removal; and
e) Staged Liquid Phase Reactors.

With any of these options, there is still no need for upstream stoichiometric adjustment of the
feed gas by the water-gas shift reaction and CO, removal, so the simplicity of once-through CO-
rich gas processing is retained.

The design configuration for the LPMEOH™ Process depends upon the degree of conversion of
syngas (or the quantity of methanol produced relative to the power plant size).
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The features of the LPMEOH™ Process that satisfy the requirements in the coproduction
application can also be applied to other carbon-rich feedstocks such as petroleum coke and other
environmentally disadvantaged fuels. The LPMEOH™ Process has also shown the potential to
meet the economic requirements for large, natural gas-based methanol production plants.®

10.1.2 Market Size and Barriers

Table 10.1.2-1 provides an assessment by the Methanol Institute of the forecast of the market for
methanol through 2007.®) The decrease in demand for methanol to produce MTBE is expected
to be offset by increases in other basic chemicals such as formaldehyde and methyl methacrylate.

Beyond this analysis, the potential exists for future market growth for methanol as a source of H,
for fuel cell systems.

As noted in Section 10.1.1, a key market for the LPMEOH™ Process is the coproduction of
methanol with electric power in an IGCC power plant. Using the DOE’s High Fossil Electricity
Technology Case that relates to the output of DOE’s Fossil Energy program, the potential market
for IGCC power plants in the United States could exceed 60 GW by 2020. Assuming that
coproduction could be a candidate for 10-20% of this total, the opportunity can exist for
significant market participation for the LPMEOH™ Process.

The methanol marketplace is currently undergoing a period of transition due to the planned
elimination of MTBE by several states in the United States as well as the development of large

(greater that 5,000 metric tons per day), off-shore methanol plants utilizing low-cost natural gas
as feedstock.

Future markets will depend on such factors as the rate of growth of the IGCC power generation

Table 10.1.2-1
Market Forecast for Methanol
(Thousands of Metric Tons; Source: Methanol Institute)

SUPPLY 2003 2004 2005 2006 2007
Capacity Available 35,680 38,617 40,692 39,944 40,910
Production 30,427 31,016 31,774 31,885 32,196
Excess Capacity 5,253 7,601 8,918 8,059 8,714
Operating Rate 85% 80% 78% 80% 79%
DEMAND

Formaldehyde 11,000 11,390 11,708 12,029 12,386
MTBE 7,506 7,428 7,197 6,598 6,207
Acetic Acid 3,339 3,374 3,649 3,735 3,826
Dimethyl Terephthalate 590 590 603 618 632
Methyl Methacrylate 892 923 979 1,004 1,030
Gas/Fuels 859 867 896 946 988
Solvents 1,285 1,313 1,342 1,379 1,411
Others 4,956 5,131 5,401 5,577 5,716
TOTAL DEMAND 30,427 31,016 31,774 31,885 32,196

10-3

Kingsport LPMEOH™ CCT Project Final Report: Volume 2 (June 2003)



business, global methanol market prices, and government incentives aimed at encouraging IGCC
and/or IGCC coproduction projects, consistent with DOE’s Vision 21. Methanol coproduction
with IGCC power generation, using the LPMEOH™ Process, will continue to benefit from the
economies of scale provided by the gasification plant, and result in lower methanol costs than for
a standalone methanol plant with the same methanol production capacity. Methanol transport
economies, compared with imported methanol based on low cost stranded natural gas, can also
be achieved by serving local inland markets. Outside the United States, most of the current
interest in LPMEOH™ technology has come from China, because of China’s abundance of coal,
historic dependence on domestic chemical production, and the amenability of the LPMEOH™
Process to coal-based syngas. In the longer term, the development of clean coal projects in
China utilizing IGCC technology would provide a platform for additional interest in the
LPMEOH™ Process. In the U.S., interest in LPMEOH™ technology will also depend on the
development and timing of the IGCC industry, which in turn will depend on a number of factors,
notably, natural gas price and availability, further improvement in IGCC economics, new
environmental regulations further affecting coal-based power generation, and government
incentives.

10.1.3 Economic Comparison with Competing Technologies

As noted in Section 9, a topical report was written during the performance period that compared
the cost of methanol as produced from the LPMEOH™ Process and from a conventional gas-
phase process as applied to a generic 500 sT/D methanol plant as part of an IGCC coproduction
facility. The cost of methanol was calculated as the sum of three terms: the methanol
conversion cost (which includes the fixed and operating costs for the methanol unit), the
distillation cost, and the syngas cost from the IGCC facility. A proprietary cost estimation
screening program was used to calculate the methanol conversion cost and the distillation cost
from the LPMEOH™ Process and the gas-phase process for various syngas supply pressures and
on-stream factors. The methanol conversion cost from the LPMEOH™ Process was $0.02 to
$0.07 per gallon lower than from the gas-phase methanol process.

A major component of the methanol conversion cost in an IGCC complex is the cost to distill the
as-produced methanol product in order to meet the final specification. It is typical for methanol
to be stabilized (either by distillation or by deep flashing) to remove volatile components (such
as CO;) and permit shipment and transport in atmospheric vessels. Beyond stabilization, other
distillation may be necessary so that the final methanol product meets the specification for the
designated end-use. There are two grades of methanol product (Chemical-Grade AA and Fuel-
Grade) that could be used in downstream chemical or power applications. These grades of
methanol differ in the amounts of water and higher alcohols that are present in the final product.
In particular, the Fuel-Grade product has a water specification of 1 wt%, while the Chemical-
Grade AA methanol has a maximum water content of 0.1 wt%.

The LPMEOH™ Process, which can directly process coal-derived syngas which is rich in CO,
produces a methanol product with nominally about 1 wt% water. Whereas, gas-phase methanol
synthesis results in as-produced methanol stream with 2-20 wt% water, depending on the amount
of CO; in the syngas which is converted to methanol and water. This resulted in lower
purification cost for the LPMEOH™ Process for the Fuel-Grade product. By applying the same
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cost estimation screening program, the distillation cost to produce Fuel-Grade methanol from the
LPMEOH™ Process which directly utilizes CO-rich syngas was about $0.02 per gallon less than
from the gas-phase methanol process.

Sensitivity studies performed as part of this Report indicated that the magnitude of the advantage
in the methanol conversion cost for the LPMEOH™ Process when compared with the
conventional gas-phase process is increased when:

a) the syngas is rich in CO,

b) syngas is available at higher pressures,

¢) only modest syngas conversion to methanol is required,

d) syngas is available with low H,S and COS content,

e) inerts in the syngas (such as N, in the O, from the air separation unit feeding the
gasifier) are relatively high, and

f) Fuel-Grade Methanol is required.

Table 10.1.3-1 summarizes several operating scenarios for a baseload 500 sT/D LPMEOH™
Facility, when compared with the more complex 500 sT/D gas-phase methanol facility. As in
the prior discussion, the baseload coproduction assumes that the syngas is normally available
90% of the time and syngas is charged at $4.50 per MMBtu. Cost advantages of $0.04 to $0.11
per gallon of methanol can be realized by utilizing the LPMEOH™ Process.

10.2 COMMERCIALIZATION PLAN

During the development phase for the LPMEOH™ technology, a team within Air Products was
assembled to manage the various programs needed to achieve commercial readiness. With the
conclusion of the LPMEOH™ Demonstration Project, these efforts have achieved this goal.
Future commercial activities will be managed from the Worldwide Hydrocarbon Equipment
business unit.

Any future offerings will be based on the results from both the 4-month proof-of-concept run at
the LaPorte AFDU and the operation at the LPMEOH™ demonstration unit. Future process
flow

Table 10.1.3-1
Baseload Coproduction, 500 sT/D, Fuel Grade Methanol
CO-rich Syngas (H,:CO = 0.68) @ $4.50 per MMBtu

Syngas Feed Pressure, psig 500 500 1,000 1,000
Flow Scheme Once-Through  1:1 Recycle  Once-Through  1:1 Recycle
Syngas Conversion, % 34 46 34 46
Methanol Cost, $/Gal 0.548 0.567 0.483 0.529
LPMEOH™ Advantage 0.055 0.036 0.109 0.063

over gas-phase, $/Gal
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diagrams will derive from the as-built flowsheet from the LPMEOH™ demonstration unit.
Catalyst performance has improved since the completion of the second in-situ catalyst activation
in June of 2002, and provides an indication of the potential for improved economics for the
LPMEOH™ Process. Future project opportunities will likely be based on coal-derived syngas in
either IGCC facilities or standalone coal-to-chemicals complexes, or syngas that is produced
from environmentally disadvantaged feedstocks (such as petroleum coke). Facility availability
at the LPMEOH™ demonstration unit has been excellent since initial startup, and consistent
with the high demands that accompany these capital-intensive projects.

10.3 SECTION 10 BIBLIOGRAPHY
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11.0 CONCLUSIONS AND RECOMMENDATIONS

The LPMEOH™ Demonstration Project accomplished the objectives set out in the Cooperative
Agreement with DOE for this Clean Coal Technology project. Methanol operation began on 02
April 1997, and startup was completed in two days. Nameplate production of 80,000 gallons per
day (260 sT/D) was achieved within four days, and production rates exceeding 115% of design
were achieved within six days. Overall availability of the LPMEOH™ demonstration unit was
97.5%, and the longest operating period without interruption of any kind was 94 days. Over
103.9 million gallons of methanol was produced, including a one-month maximum of 2.5 million
gallons. Eastman accepted all of the available methanol for use in the production of methyl
acetate, and ultimately cellulose acetate and acetic acid.

The slurry bubble column reactor was successfully scaled from the 10 sT/D LaPorte AFDU to
the 260 sT/D LPMEOH™ demonstration unit. The LPMEOH™ reactor did not exhibit any
hydrodynamic instability, and the maximum catalyst loading of 151% of the design value of
about 40,000 pounds (corresponding to a slurry concentration of greater than 49 wt%) was
achieved. The gas sparger at the inlet to the LPMEOH™ reactor was replaced with two
modified units (using the same design principles as the original device), and stable performance
was realized when a continuous flush of condensed process oil (in this case, by gravity) was
utilized.

Catalyst performance (as determined by the rate of catalyst deactivation using an in-house
kinetic model) improved during the demonstration test period. Initially high deactivation rates
using Balanced Gas (greater than 1% per day vs. the design basis of 0.4% per day from a 4-
month proof-of-concept run on CO-rich syngas derived from natural gas at the LaPorte AFDU
[1988/89]) at the design operating temperature of 250°C were attributed to the presence of post-
construction debris in the reactor system. During the second catalyst campaign that began in
December of 1997, the rate of catalyst deactivation was calculated to be 0.6 to 0.7% per day at a
reactor temperature of 235°C. The practice of catalyst withdrawal and addition (removing a
portion of the spent catalyst from the LPMEOH™ reactor and adding fresh catalyst in 2,000
pound batches) to maintain the desired methanol production rate was successfully demonstrated.

In determining the reasons for the higher rate of catalyst deactivation, the presence of certain
elements (in particular, arsenic and sulfur) was identified from samples of spent catalyst, spent
adsorbent materials from catalyst guard beds, and syngas entering the LPMEOH™
demonstration unit. A commercially available copper oxide-impregnated activated carbon was
identified as having capacity to remove arsenic (in the form of arsine) within the existing
carbonyl guard bed that was originally designed for removal of metal carbonyls at ambient
temperature.

In parallel, laboratory testing was performed to develop a procedure to activate (or reduce) a full
charge of methanol synthesis catalyst within the LPMEOH™ reactor (so-called in-situ
activation). During the operating program, this feature was identified as having significant
commercial interest, as capital cost savings of about 10% could be realized by elimination of the
separate processing equipment for the catalyst withdrawal/addition procedure. Also, operating
the LPMEOH™ reactor at low temperatures at the outset and slowly increasing temperature with
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time to maintain a constant production of methanol (called temperature programming) was
believed to have the potential to extend the life of the methanol synthesis catalyst. Following the
first in-situ activation of methanol synthesis catalyst in August of 2001 (during which initial
performance of the catalyst was about 70% of the value expected from the laboratory testing),
the concept of temperature programming was demonstrated (temperature was gradually raised
from 216°C to 250°C in order to maintain the desired methanol production rate). Following
changes to the storage conditions of the catalyst slurry prior to reduction, the in-situ activation
procedure was successfully practiced in June of 2002, resulting in the catalyst meeting the initial
performance targets.

During the final six months of operation under the demonstration test plan, the average rate of
catalyst deactivation was calculated to be 0.17% per day, which was 'z of the design basis for the
LPMEOH™ demonstration unit. The reactor was maintained at a constant low temperature of
215°C during this period, and the carbonyl guard bed adsorbent (copper oxide-impregnated
activated carbon) was replaced with fresh material after 3 months of operation (including a novel
thermal treatment that was applied after two months to extend the useful life of the adsorbent).
Because the impact of catalyst cost on the economics of methanol production is significant
(reducing the rate of catalyst deactivation by up to 2 of the current basis can realize a 25 percent
reduction in variable cost), this performance demonstrated the potential of the LPMEOH™
process to meet the targets for catalyst consumption utilizing coal-derived syngas.

Although the host site for the LPMEOH™ demonstration unit was a chemical production
facility, testing was able to be performed to simulate the performance of the LPMEOH™
Process in an IGCC power plant. A total of 78 days of testing at a variety of H,:CO ratios were
performed to evaluate the effect of syngas compositions expected from coal-based IGCC units
on the performance of the LPMEOH™ Process. All of the results met the expectations for
methanol production rate based upon earlier studies in the laboratory. Catalyst performance for
the LPMEOHU reactor with lower H,:CO ratios were not significantly impacted based on the
calculated rate of catalyst deactivation. On/off and ramping studies were also completed, and the
LPMEOH™ demonstration unit was capable of meeting the ramping requirements for an IGCC
system by achieving the goal of a minimum 5% change in design flow per minute. Tests of the
ability of the LPMEOH™ reactor to operate in an electrical load-following environment were
also successful.

An off-site, fuel-use test program was conducted to demonstrate the suitability of stabilized
(degassed) methanol product as a transportation fuel and as a fuel for stationary applications for
small modular electric power generators for distributed power. Stabilized (degassed) methanol
produced from CO-rich syngas in the LPMEOH™ Process can have less than 1 wt% water, and
has the potential to be used directly in these applications. Stabilized methanol from the
LPMEOH™ Demonstration Project was made available to seven test locations. Successful
demonstration of the use of stabilized methanol in these applications can enhance the flexibility
of and revenue from IGCC plants. In bus and FFV trials, stabilized methanol provided the same
environmental benefits as chemical-grade methanol with no penalty on performance or fuel
economy. Tests in a gas turbine and a diesel generator showed that levels of NOy in the exhaust
air were lowered when stabilized methanol or methanol emulsions are used instead of
conventional oil fuels. As with chemical-grade methanol, lubrication additives will likely be
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required when stabilized methanol is fed to a gas turbine. Testing of stabilized methanol as the
source of H; to a phosphoric acid fuel cell has shown that conventional steam reforming
catalysts are not compatible with the trace mineral oil present in the stabilized methanol; when
auto-thermal reforming or partial oxidation reforming are used, the stabilized methanol would
possibly be acceptable as a fuel. Methanol from the LPMEOH™ Process that is purified to
chemical-grade specifications should be suitable for use in this application.

As a secondary objective to the LPMEOH™ Demonstration Project, design verification testing
was completed to evaluate capability of the slurry bubble column reactor to produce DME as a
mixed coproduct with methanol using the LPDME™ Process. In addition to its current uses,
DME has potential applications as a chemical building block. Also, since the physical properties
of DME are similar to those of LPG, it has been speculated that DME could be used in large
scale power production, in home heating, in replacement of LPG for automobiles, and as a diesel
fuel substitute or combustion supplement. Economic targets on the production cost of DME
from the LPDME™ Process were established, and a 25-day design verification test was
performed at the LaPorte AFDU in 1999. The rate of catalyst deactivation for both the methanol
synthesis and dehydration catalysts was calculated to be 0.7% per day, which was a large
improvement over the 4% per day rate of deactivation which was calculated from autoclave
studies prior to the initial test of the LPDME™ Process at the LaPorte AFDU in 1991; these
results were slightly higher than the results (0.5% per day) for the LPMEOH™ Process from the
first 3 weeks of the 4-month proof-of-concept run at the LaPorte AFDU in 1988/89. Follow-up
economic analysis showed that the target DME cost of $7 to $8 per MMBtu (equivalent to costs
for LPG in China) can likely be achieved at plant sizes approaching 1,100 sT/D. The program
participants agreed that additional work on DME should be deferred so that all resources could
be directed toward improving the catalyst performance for the LPMEOH™ Process during the
remaining time within the operating program.

The commercial application of the LPMEOH™ technology with the greatest long-term potential
continues to be the coproduction of methanol within an IGCC power plant. The ability of the
slurry reactor to ramp rapidly and to start/stop easily makes it amenable to peak shaving
scenarios in an IGCC power plant. Of significant interest is that relatively small quantities
(30,000 gallons per day) of methanol can be coproduced from coal at world scale (greater than
600,000 gallons per day) economics. Parametric studies were performed to determine the
production cost of methanol from the LPMEOH™ Process in an IGCC power plant. The process
can be designed to operate in a continuous, baseload manner, converting syngas from oversized
gasifiers or from a spare gasifier. The process can also be designed to operate only during
periods of off-peak electric power demand to consume a portion of the excess syngas and allow
the electricity output from the combined-cycle power unit to be reduced. In this latter
circumstance, the gasifiers continue to operate at full baseload capacity, so the IGCC facility's
major capital asset is fully utilized. In either baseload or cycling operation, partial conversion of
between 20% and 40% of the volume of H, and CO in the IGCC power plant's syngas is optimal
on an economic basis, and conversion of up to 50% is feasible. Methanol conversion costs of
about $0.15 per gallon were determined for a coal-based IGCC plant using the once-through
configuration; when the cost of syngas is added, the price of methanol is less than $0.50 per
gallon. As the economics for IGCC systems improve, the economics for coproduction of
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methanol will continue to look attractive in local markets when compared with methanol that is
produced in off-shore locations from natural gas.

Further reductions to the cost of syngas from a modern coal gasification system will increase the
market opportunities for coproduction of chemicals such as methanol from the LPMEOH™
Process. Developments of and advancements in the processes for the removal of trace
contaminants in coal-derived syngas will extend catalyst life and lead to lower methanol
conversion costs. Continued studies of the hydrodynamics of slurry bubble column reactors
would facilitate the use of larger diameter reactors, which will improve the economies of scale
for all potential feedstocks (coal, natural gas, environmentally disadvantaged fuels).
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12.0 OTHER PROJECT REPORTS AND PUBLICATIONS
(since the Public Design Report [Final Report - Volume 1])

Note: Reports or publications on specific topics are included in individual chapters where appropriate.

PN W=

BB, BR D WWWWWUWUWUWWWINNNNDPNPDNPENNNPDDNDFE =R =

Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.
. Technical Progress Report No.

34, October - December 2002.
33, July - September 2002.
32, April - June 2002.

31, January - March 2002.

30, October - December 2001.
29, July - September 2001.
28, April - June 2001.

27, January - March 2001.

26, October - December 2000.
25, July - September 2000.
24, April - June 2000.

23, January - March 2000.

22, October - December 1999.
21, July - September 1999.
20, April - June 1999.

19, January - March 1999.

18, October - December 1998.
17, July - September 1998.
16, April - June 1998.

15, January - March 1998.

14, October - December 1997.
13, July - September 1997.
12, April - June 1997.

11, January - March 1997.

10, October - December 1996.
9, July - September 1996.

8, April - June 1996.

7, January - March 1996.

6, October - December 1995.
5, July - September 1995.

4, April - June 1995.

3, October 1994 - March 1995.
2, July - September 1994.

1, October 1993 - June 1994.

. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
. Environmental Monitoring Report No.
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23, October - December 2002.
22, July - September 2002.
21, April - June 2002.

20, January - March 2002.

19, October - December 2001.
18, July - September 2001.
17, April - June 2001.

16, January - March 2001.

15, October - December 2000.
14, July - September 2000.
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45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
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Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.
Environmental Monitoring Report No.

13, April - June 2000.

12, January - March 2000.
11, October - December 1999.
10, July - September 1999.
9, April - June 1999.

8, January - March 1999.

7, October - December 1998.
6, July - September 1998.

5, April - June 1998.

4, January - March 1998.

3, October - December 1997.
2, July - September 1997.

1, April - June 1997.

“Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process”, Public
Design Report (Final Design Report, Volume 1: Public Design)”, Prepared by Air Products Liquid
Phase Conversion Co., L.P., DOE Cooperative Agreement No. DE-FC22-92PC90543, January 2000.
“Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process”,
Demonstration Technology Startup Report”, Prepared by Air Products Liquid Phase Conversion Co.,
L.P., DOE Cooperative Agreement No. DE-FC22-92PC90543, September 1998.

“Peroxide Formation of Dimethyl Ether in Methanol Mixtures”, Topical Report Prepared by Air

Products Liquid Phase Conversion Co.

92PC90543, November 1997.

, L.P., DOE Cooperative Agreement No. DE-FC22-

“Liquid Phase Methanol (LPMEOH™) Process Development”, E. C. Heydorn, B. W. Diamond (Air
Products and Chemicals, Inc.), R. D. Lilly (Eastman Chemical Co.), and R. M. Kornosky (U.S.
Department of Energy), 2001 Pittsburgh Coal Conference, 04-07 December 2001.

“Liquid Phase Methanol (LPMEOH™) Process Development Demonstration Plant Availability”, D.
E. Benedict, E. C. Heydorn (Air Products and Chemicals, Inc.), R. D. Lilly (Eastman Chemical Co.),
and R. M. Kornosky (U.S. Department of Energy), 2001 Gasification Technologies Conference, 07-

10 October 2001.

“Lubricity Problems and Solutions in a Methanol Fueled Gas Turbine”, R. E. Bond, J. L. Loth, R. W.
Guiler, N. N. Clark (West Virginia University), E. C. Heydorn, P. J. A. Tijm (Air Products and
Chemicals, Inc), 2000 International Mechanical Engineering Congress and Exposition, 05-10

November 2000.

“Liquid Phase Methanol (LPMEOH™) Process Development”, E. C. Heydorn, P. J. A. Tijm, B. L.
Bhatt (Air Products and Chemicals, Inc.), B. T. Smith (Eastman Chemical Co.), and R. M. Kornosky
(U.S. Department of Energy), Energex 2000 — The 8" International Energy Forum, 23-28 July 2000.
“Catalyst and Process Development for Liquid Phase DME Synthesis”, B. L. Bhatt, B. A. Toseland,
X. D. Peng, E. C. Heydorn, (Air Products and Chemicals, Inc.), 2000 Pittsburgh Coal Conference, 11-

15 September 2000.

“Liquid Phase Methanol (LPMEOH™) Project: Operating Experience Update”, P. J. A. Tijm, E. C.
Heydorn, B. W. Diamond (Air Products and Chemicals, Inc.), B. T. Street (Eastman Chemical Co.),
and R. M. Kornosky (U.S. Department of Energy), 1999 Gasification Technologies Conference, 17-

20 October 1999.

“Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process, Clean Coal
Technology Topical Report No. 11, April 1999.

"Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process: Initial
Operating Experience", E. C. Heydorn, V. E. Stein, P. J. A. Tijm (Air Products and Chemicals Inc.),
B. T. Street (Eastman Chemical Co.), and R. M. Kornosky (U.S. Department of Energy), Sixth Clean
Coal Technology Conference, May 1998.
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APPENDIX A

ANALYTICAL MEASUREMENTS FOR LPMEOH™ DEMONSTRATION UNIT
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations

Stream No.
Description

PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
LPMEOH[ Gas Analysis (vol%)

Hydrogen

Carbon Monoxide
Nitrogen

Carbon Dioxide
Methanol

Dimethyl Ether
Methane

Oxygen (Argon)
Trace (by difference)

Analysis Frequency
Sampling Technique
Analytical Method

Kingsport LPMEOH™ CCT Project

10
CO Gas to LPMEOH™
Demonstration Unit
10
2

X (Summary Data)
X

KRR

Continuous
Piped to GC
GC

A-2

19
Distillation Fuel Gas

XXXk X

Continuous
Piped to GC
GC
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations (cont’d)

Stream No.
Description

PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
LPMEOH[ Gas Analysis (vol%)

Hydrogen

Carbon Monoxide
Nitrogen

Carbon Dioxide
Methanol

Dimethyl Ether
Methane

Oxygen (Argon)
Trace (by difference)

Analysis Frequency
Sampling Technique
Analytical Method
Notes:

20
H, Gas to LPMEOH™
Demonstration Unit
20
3

X (Summary Data)
X

KRR

Continuous
Piped to GC
GC

30
Balanced Gas to LPMEOH™
Demonstration Unit
30
1

X (Summary Data)
X

T

Continuous
Piped to GC
GC

a. Stream 20 was not available during operation of the LPMEOH™ demonstration unit (refer to Section 3.1.3).

Kingsport LPMEOH™ CCT Project
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations (cont’d)

Stream No.
Description
PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
LPMEOH[ Gas Analysis (vol%)

Hydrogen

Carbon Monoxide
Nitrogen

Carbon Dioxide
Methanol

Dimethyl Ether
Methane

Oxygen (Argon)
"Other" (by difference)

Analysis Frequency
Sampling Technique
Analytical Method

Kingsport LPMEOH™ CCT Project

109
Reactor Feed Gas
109
5

X (Summary Data)
X

KoK

Continuous
Piped to GC
GC

A-4

120
Reactor Section Effluent Gas
120
6

XXX K X

Continuous
Piped to GC
GC
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations (cont’d)

Stream No.
Description
PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
LPMEOH[ Gas Analysis (vol%)

Hydrogen

Carbon Monoxide
Nitrogen

Carbon Dioxide
Methanol

Dimethyl Ether
Methane

Oxygen (Argon)
"Other" (by difference)

Analysis Frequency
Sampling Technique
Analytical Method

Kingsport LPMEOH™ CCT Project

148
Main (Plant) Purge
148
7

X (Summary Data)
X

KoK

Continuous
Piped to GC
GC

A-5

149
Recycle Gas
149
7

XXX K X

Continuous
Piped to GC
GC
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations (cont’d)

Stream No.
Description
PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
Methanol Analysis (Wt%)

Acetic Acid
Water
Decane
Methanol
Acetone
Ethanol

Analysis Frequency
Sampling Technique
Analytical Method

Kingsport LPMEOH™ CCT Project

204

Methanol to Distillation
204
N/A

XX XX X

Weekly
Grab
GC/IR/TC

A-6

216
Refined-Grade Methanol
216
N/A

X (Summary Data)
X

T

Daily
Grab
GC/IR/TC
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Table A-1

Summary of Streams to be Analyzed for Material Balance Calculations (cont’d)

Stream No.
Description

PFD Material Balance Point No.
Gas Chromatograph Point No.
Reported in:
EMRs (Compliance)
EMRs (Supplemental)
Technical Progress Reports
Test Series Report (one time)
Temperature
Pressure
Flow Rate
Composition
Methanol Analysis (Wt%)

Acetic Acid
Water
Decane
Methanol
Acetone
Ethanol

Analysis Frequency
Sampling Technique
Analytical Method

Kingsport LPMEOH™ CCT Project

242
Crude-Grade Methanol to
Lurgi (Methanol) Unit
242
N/A

X (Summary Data)

X

)R XX

Weekly
Grab
GC/IR/TC

A-7
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Test Methods for Sampling of Syngas

Test methods were developed to determine the average concentration of arsenic (reported as
arsine), iron, and nickel in syngas streams; these techniques were typically applied to the fresh
feed gas entering the LPMEOH™ demonstration unit.

Gas-phase arsenic concentrations in a syngas feed were determined using a modified version of
the National Institute for Occupational Safety and Health (NIOSH) Method 6001 for “Arsine” in
which arsenic was trapped on a column of activated carbon. A diagram of the sampling set-up is
given in Figure A.1. Sample gas was purged through a charcoal packed into a stainless steel
tube for a predetermined length of time and flow. The sampling flow was set with the fine
metering valve as illustrated. The charcoal was then washed with dilute nitric acid and arsenic
was determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES).

The limit of detection was 1-5 ppbv arsenic (as arsine).

Gas-phase iron carbonyl concentrations in a syngas feed were determined using a modified
NIOSH method 6007 for “Nickel Carbonyl,” which is similar to the method for arsine previously
described. Sample gas was purged through a packed bed of charcoal in a stainless steel tube for
a predetermined length of time and flow. The charcoal was then washed with dilute nitric acid
and the iron content was determined by ICP-AES. The limit of detection was relatively high due
to the baseline presence of iron in charcoal, with a typical limit of 10 ppbv iron (as iron
carbonyl).

Figure A-1
Syngas Sampling Apparatus

Valve #1 --Coarse Mgtering Valve
Valve #2 --Fine Meteging Val

10 PSIG Relief Valve

Stainless Steel

Stainless Tubing/ Connections -

Flowmeter Regulator

GB =110MM (Flammable)

SSB = 60MM

Pipeline
Charcoal
~g—- Adsorbent Tube
To Vent
Valve (Open Position)
A-8
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A gas scrubbing technique, using concentrated nitric acid as the scrubbing solution, was also
utilized for determination of the concentration of iron carbonyl. Sample gas was purged through
a set of bubbling impingers containing nitric acid scrubbing solutions for a predetermined length
of time and flow. The nitric acid solution was then analyzed and the iron content was
determined by ICP-AES. The limit of detection was generally in the range of 3-5 ppbv iron (as
iron carbonyl).

A-9
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APPENDIX B

SAMPLE MATERIAL BALANCES FROM LPMEOH™ DEMONSTRATION UNIT
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APPENDIX C

DETAILS ON DATA ANALYSIS METHODOLOGY
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APPENDIX C-2

METHODS OF CALCULATION FOR KEY PROCESS PARAMETERS

Catalyst Age () = ko/ko(t=0)

where: ki, = the pre-exponential kinetic rate constant for the methanol synthesis reaction at
any time

ko(t=0) = the pre-exponential kinetic rate constant for the methanol synthesis
reaction for fresh catalyst

The rate constants are determined using a proprietary model which computes the
kinetic rate constant for the methanol synthesis reaction.

CO Conversion to Methanol [%] =
(Raw Methanol Flow + Methanol in Main Plant Purge + Methanol in Distillation Purge [all Ibmol/hr])
Carbon Monoxide in Reactor Feed [Ibmol/hr] * 0.01

where: Methanol in Main Plant Purge [Ilbmol/hr] = Main Plant Purge Flow [lbmol/hr] *
Methanol Concentration in Main Plant Purge [mol%]

Methanol in Distillation Purge [lbmol/hr] = Distillation Purge Flow [lbmol/hr] *
Methanol Concentration in Distillation Purge [mol%]

Carbon Monoxide in Reactor Feed [Ibmol/hr] = Reactor Feed Flow [Ibmol/hr] *
Carbon Monoxide Concentration in Reactor Feed [mol%)]

Gas Holdup (vol%) = (Liquid-Solid Density [Ib/ft'] - 3-Phase Density [Ib/ft’]) * 100
(Liquid-Solid Density [Ib/ft’] - Vapor Density [Ib/ft'])

where: Vapor Density [Ib/ft’] is calculated using the composition at the Reactor
Effluent, and at the measured temperature and pressure of the Reactor

3-Phase Density [Ib/ft’] = Pressure Drop [psi] * 144 [in*/ft]
Span between Taps of Pressure Drop Measurement [ft]

Liquid-Solid Phase Density [Ib/ft’] is a function of the catalyst concentration [wt%],
which is iterated until the calculated weight of catalyst matches the catalyst
weight in the Reactor.

General Notes:
a. All terms in [talics refer to measured variables, either by field instruments or gas chromatographs.
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APPENDIX C-2

METHODS OF CALCULATION FOR KEY PROCESS PARAMETERS (cont’d)

Gassed Slurry Volume [ft'] = Reactor Cylindrical Volume [ft’] + Reactor Head Volume [ft’]
where: Reactor Cylindrical Volume [ft’] = A [ft’] * Cylindrical Height [ft]

A [f'] = O * (Reactor ID [ft])* * (Fraction Open Area)
4

Reactor ID = Reactor Inside Diameter = 7.5 ft

Fraction Open Area = 0.9652 (3.48% of the cross-sectional area of the Reactor is
occupied by the tubes of the internal heat exchanger)

Cylindrical Height [ft] = Gassed Slurry Height [t] - (Reactor ID [ft])
4

Note: The term “(Reactor ID)/4” is the depth of the bottom head of the Reactor.

Reactor Head Volume [ft’] = I * (Reactor ID [ft])’ - 8 [ft']
24

Note: 8 cubic feet is subtracted from the Reactor Head Volume to account
for the displacement of the gas sparger and the header piping for the
internal heat exchanger.

Inlet Superficial Velocity [ft/s] = Reactor Feed Flow [lbmol/hr] * V [ft’/Ibmol]
3,600 [s/hr] * A [ft]

where: V [ft3/lbmol] = 10.73 * (Reactor Temperature [°F] + 459.67)
(Reactor Pressure [psig] + 14.1)

A [f] = O * (Reactor ID [ft])* * (Fraction Open Area)
4

Reactor ID = Reactor Inside Diameter = 7.5 ft
Fraction Open Area = 0.9652 (3.48% of the cross-sectional area of the Reactor is

occupied by the tubes of the internal heat exchanger)

General Notes:
a. All terms in [talics refer to measured variables, either by field instruments or gas chromatographs.
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APPENDIX C-2

METHODS OF CALCULATION FOR KEY PROCESS PARAMETERS (cont’d)

Methanol Productivity [gmol/kg-hr] =
(Methanol in Reactor Effluent [Ilbmol/hr] - Methanol in Reactor Feed [Ibmol/hr]) * 1.000 [g/kg]
Catalyst Weight (Ib oxide)

where: Methanol in Reactor Effluent [Ilbmol/hr] = Reactor Effluent Flow [lbmol/hr] *
Methanol Concentration in Reactor Effluent Stream [mol%]

Methanol in Reactor Feed [Ibmol/hr] = Reactor Feed Flow [lbmol/hr] *
Methanol Concentration in Reactor Feed Stream [mol%]|

Reactor O-T-M Conversion [%] = LHV of Raw Methanol * 100
LHYV of Reactor Feed

Note: Lower heating values (LHV’s) for Raw Methanol and Reactor Feed are calculated
from compositions of each stream, in units of million Btu per hour.

Reactor Volumetric Productivity [TPD/ft’] = Raw Methanol Flow [TPD]
Gassed Slurry Volume [ft']

Space Velocity [sL/kg-hr] = Reactor Feed Flow [lbmol/hr] * 10,175 [sL/Ibmol @ 0°C]
Catalyst Weight [1b oxide] * 0.454 [kg/Ib]

Sparger Resistance Coefficient “K” =
Sparger Pressure Drop [psi] * Reactor Feed Density [Ib/ft'] * constant
(Reactor Feed Flow [KSCFH] * Reactor Feed Molecular Weight [1b/Ibmol])*

Syngas Usage [Btu/gallon Methanol] =
Syngas LHV to Methanol [Btu/hr] * 24 [hr/day] * 6.642 [Ib/gallon Methanol]
Raw Methanol Flow [TPD] * 2,000 [Ib/ton]

where: Syngas LHV to Methanol [Btu/hr] = the difference between the Lower Heating
Value of the three feed gas streams (Balanced Gas, CO Gas, H, Gas) and the
two purge gas streams (Main Plant Purge, Distillation Purge). Lower heating
values are calculated from the compositions of each stream.

General Notes:
a. All terms in [talics refer to measured variables, either by field instruments or gas chromatographs.
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APPENDIX C-2

METHODS OF CALCULATION FOR KEY PROCESS PARAMETERS (cont’d)

Syngas Utilization [SCF/Ib Methanol] =
(Balanced Gas Flow [SCFH] + CO Gas Flow [SCFH]) * 24 [hr/day]
Raw Methanol Flow [TPD] * 2,000 [Ib/ton]

General Notes:
a. All terms in [talics refer to measured variables, either by field instruments or gas chromatographs.
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DATA SUMMARY TABLES
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